Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(17): 6454-6464, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699272

ABSTRACT

Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.

2.
Nat Rev Chem ; 8(5): 376-400, 2024 May.
Article in English | MEDLINE | ID: mdl-38693313

ABSTRACT

Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.

3.
J Am Chem Soc ; 144(30): 13874-13887, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35854402

ABSTRACT

Catalysts composed of platinum dispersed on zeolite supports are widely applied in industry, and coking and sintering of platinum during operation under reactive conditions require their oxidative regeneration, with the platinum cycling between clusters and cations. The intermediate platinum species have remained only incompletely understood. Here, we report an experimental and theoretical investigation of the structure, bonding, and local environment of cationic platinum species in zeolite ZSM-5, which are key intermediates in this cycling. Upon exposure of platinum clusters to O2 at 700 °C, oxidative fragmentation occurs, and Pt2+ ions are stabilized at six-membered rings in the zeolite that contain paired aluminum sites. When exposed to CO under mild conditions, these Pt2+ ions form highly uniform platinum gem-dicarbonyls, which can be converted in H2 to Ptδ+ monocarbonyls. This conversion, which weakens the platinum-zeolite bonding, is a first step toward platinum migration and aggregation into clusters. X-ray absorption and infrared spectra provide evidence of the reductive and oxidative transformations in various gas environments. The chemistry is general, as shown by the observation of platinum gem-dicarbonyls in several commercially used zeolites (ZSM-5, Beta, mordenite, and Y).

4.
J Phys Chem Lett ; 13(17): 3896-3903, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35471032

ABSTRACT

Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal-support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by extended X-ray absorption fine structure and X-ray absorption near edge structure spectroscopies, infrared spectroscopy of adsorbed CO, and scanning transmission electron microscopy. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.

5.
J Am Chem Soc ; 143(48): 20144-20156, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34806881

ABSTRACT

Atomically dispersed supported metal catalysts offer new properties and the benefits of maximized metal accessibility and utilization. The characterization of these materials, however, remains challenging. Using atomically dispersed platinum supported on crystalline MgO (chosen for its well-defined bonding sites) as a prototypical example, we demonstrate how systematic density functional theory calculations for assessing all the potentially stable platinum sites, combined with automated analysis of extended X-ray absorption fine structure (EXAFS) spectra, leads to unbiased identification of isolated, surface-enveloped platinum cations as the catalytic species for CO oxidation. The catalyst has been characterized by atomic-resolution imaging and EXAFS and high-energy resolution fluorescence detection X-ray absorption near edge spectroscopy. The proposed platinum sites are in agreement with experiment. This theory-guided workflow leads to rigorously determined structural models and provides a more detailed picture of the structure of the catalytically active site than what is currently possible with conventional EXAFS analyses. As this approach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that it will be of broad interest to the materials characterization and catalysis communities.

6.
J Biol Chem ; 279(22): 23061-72, 2004 May 28.
Article in English | MEDLINE | ID: mdl-15004022

ABSTRACT

Hyaluronan-binding protein 1 (HABP1) is a trimeric protein with high negative charges distributed asymmetrically along the faces of the molecule. Recently, we have reported that HABP1 exhibits a high degree of structural flexibility, which can be perturbed by ions under in vitro conditions near physiological pH (Jha, B. K., Salunke, D. M., and Datta, K. (2003) J. Biol. Chem. 278, 27464-27472). Here, we report the effect of ionic strength and pH on thermodynamic stability of HABP1. Trimeric HABP1 was shown to unfold reversibly upon dissociation ruling out the possibility of existence of folded monomer. An increase in ionic concentration (0.05-1 M) or decrease in pH (pH 8.0-pH 5.0) induced an unusually high thermodynamic stability of HABP1 as reflected in the gradual increase in transition midpoint temperature, enthalpy of transition, and conformational entropy. Our studies suggest that the presence of counter ions in the molecular environment of HABP1 leads to dramatic reduction of the intramolecular electrostatic repulsion either by de-ionizing the charged amino acid residues or by direct binding leading to a more stable conformation. A regulation on cellular HA-HABP1 interaction by changes in pH and ionic strength may exist, because the more stable conformation attained at higher ionic strength or at acidic pH showed maximum affinity toward HA as probed either in solid phase binding assay on HA-immobilized plates or an in-solution binding assay using intrinsic fluorescence of HABP1.


Subject(s)
Hyaluronan Receptors/chemistry , Carrier Proteins , Cations , Humans , Hyaluronan Receptors/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Hydrogen-Ion Concentration , Mitochondrial Proteins , Protein Binding , Protein Conformation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...