Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(2): e10884, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343575

ABSTRACT

Differences in the number of alien plant species in different locations may reflect climatic and other controls that similarly affect native species and/or propagule pressure accompanied with delayed spread from the point of introduction. We set out to examine these alternatives for Himalayan plants, in a phylogenetic framework. We build a database of alien plant distributions for the Himalaya. Focusing on the well-documented regions of Jammu & Kashmir (west) and Bhutan (east) we compare alien and native species for (1) richness patterns, (2) degree of phylogenetic clustering, (3) the extent to which species-poor regions are subsets of species-rich regions and (4) continental and climatic affinities/source. We document 1470 alien species (at least 600 naturalised), which comprise ~14% of the vascular plants known from the Himalaya. Alien plant species with tropical affinities decline in richness with elevation and species at high elevations form a subset of those at lower elevations, supporting location of introduction as an important driver of alien plant richness patterns. Separately, elevations which are especially rich in native plant species are also rich in alien plant species, suggesting an important role for climate (high productivity) in determining both native and alien richness. We find no support for the proposition that variance in human disturbance or numbers of native species correlate with alien distributions. Results imply an ongoing expansion of alien species from low elevation sources, some of which are highly invasive.

2.
Chem Biodivers ; 21(5): e202301830, 2024 May.
Article in English | MEDLINE | ID: mdl-38289898

ABSTRACT

The genus Malaxis (family Orchidaceae), comprises nearly 183 species available across the globe. The plants of this genus have long been employed in traditional medical practices because of their numerous biological properties, like the treatment of infertility, hemostasis, burning sensation, bleeding diathesis, fever, diarrhea, dysentery, febrifuge, tuberculosis, etc. Various reports highlight their phytochemical composition and biological activities. However, there is a lack of systematic review on the distribution, phytochemistry, and biological properties of this genus. Hence, this study aims to conduct a thorough and critical review of Malaxis species, covering data published from 1965 to 2022 with nearly 90 articles. Also, it examines different bioactive compounds, their chemistry, and pharmacotherapeutics as well as their traditional uses. A total of 189 unique compounds, including the oil constituents were recorded from Malaxis species. The highest active ingredients were obtained from Malaxis acuminata (103) followed by Malaxis muscifera (49) and Malaxis rheedei (33). In conclusion, this review offers an overview of the current state of knowledge on Malaxis species and highlights prospects for future research projects on them. Additionally, it recommends the promotion of domestication studies for rare medicinal orchids like Malaxis and the prompt implementation of conservation measures.


Subject(s)
Orchidaceae , Phytochemicals , Orchidaceae/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification
3.
Ecology ; 100(1): e02548, 2019 01.
Article in English | MEDLINE | ID: mdl-30601575

ABSTRACT

Along elevational gradients, species richness often peaks at intermediate elevations and not the base. Here we refine and test eight hypotheses to evaluate causes of a richness peak in trees of the eastern Himalaya. In the field, we enumerated trees in 50 plots of size 0.1 ha each at eight zones along an elevational gradient and compared richness patterns with interpolation of elevational ranges of species from a thorough review of literature, including floras from the plains of India. The maximum number of species peaks at similar elevations in the two data sets (at 500 m in the field sampling and between 500 m and 1,000 m in range interpolation); concordance between the methods implies that statistical artefacts are unlikely to explain the peak in the data. We reject most hypotheses (e.g., area, speciation rate, mixing of distinct floras). We find support for a model in which climate (actual evapotranspiration [AET] or its correlates) sets both the number of species and each species optimum, coupled with a geometric constraint. We consider that AET declines with elevation, but an abrupt change in the association of AET with geographical distance into the plains means that the location of highest AET, at the base of the mountain, receives range overlaps from fewer species than the location just above the base. We formalize this explanation with a mathematical model to show how this can generate the observed low-elevation richness peak.


Subject(s)
Biodiversity , Trees , Altitude , India , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...