Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 25(43): 7878-7883, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37871162

ABSTRACT

We have developed a Cp*Co(III)-catalyzed reverse regioselective [4 + 2] annulation of N-chlorobenzamides/acrylamides with vinylsilanes for the synthesis of 4-silylated isoquinolones. The reaction was performed at ambient temperature under redox-neutral conditions. The reaction utilized the N-Cl bond as an internal oxidant, furnished the required products with excellent regioselectivities, and demonstrated high functional group tolerance. The synthetic utility of 4-silylated isoquinolones has been demonstrated for the preparation of 4-heteroarylated and 4-alkylated isoquinolones via metal-free C-C couplings. Additionally, 3,4-dihydroisoquinolones were synthesized via protodesilylation of 4-silylated isoquinolones, thus making vinylsilane an ethylene surrogate.

2.
ACS Omega ; 8(28): 25262-25271, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37483194

ABSTRACT

We have developed Cp*Co(III)-catalyzed redox-neutral synthesis of 3,4-unsubstituted isoquinoline 1(2H)-ones at ambient temperature using N-chloroamides as a starting material. The reaction utilizes vinyl acetate as an inexpensive and benign acetylene surrogate. The N-Cl bond of the N-chlorobenzamides plays the role of an internal oxidant and hence precludes the need for an external oxidant. The reaction works with a wide range of substrates having various functional groups and a substrate containing a heterocyclic ring. Notably, the reaction is extended to the N-chloroacrylamides in which vinylic C-H activation occurs to furnish the 2-pyridone derivatives. Preliminary mechanistic studies were also conducted to shed light on the mechanism of this reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...