Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 105: 107881, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37257398

ABSTRACT

The discovery of novel chemotherapeutic agents is always challenging for researchers in industry and academia. Among the recent promising anticancer therapeutic targets, an important modulatory factor in mitosis is the expression of the kinesin family motor protein (Eg5). In terms of chemotherapy treatment, mitosis has gained significant attention due to its role as one of the biological processes that can be intervened in it. This study was undertaken to design, synthesise and evaluation of 4-aminoquinoline hybrid compounds as potential Eg5 inhibitors. Based on data collected from Malachite green and steady state ATPase assays, it has been determined that compounds such as 6c, 6d, 6g, and 6h are sensitive to Eg5 inhibition. In special mention, compounds 4 and 6c showed promising inhibitory activity in Malachite green assay with IC50 values of 2.32 ± 0.23 µM and 1.97 ± 0.23 µM respectively. Compound 4 showed favourable inhibitory potential Steady state ATPase Assay with IC50 value of 5.39 ± 1.39 µM. We performed molecular docking, MM/GBSA calculations, and molecular dynamic simulations to evaluate the interactions between ligands and the binding site of the kinesin spindle protein to evaluate the functional consequences of these interactions. As a result of these findings, it can be concluded that these 4-amioquinoline Schiff's base hybrids may prove to be promising candidates for development as novel inhibitors of Eg5. Further in-vivo research in this area is required.


Subject(s)
Antineoplastic Agents , Kinesins , Molecular Dynamics Simulation , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Adenosine Triphosphatases/metabolism
2.
J Biomol Struct Dyn ; 40(14): 6211-6227, 2022 09.
Article in English | MEDLINE | ID: mdl-33538239

ABSTRACT

New thiazole-thiazolidinedione hybrids (5a-k) were efficiently synthesized and evaluated for their in-vitro antimicrobial activity against four fungal and bacterial strains. The chemical structures of the compounds were elucidated by FTIR, 1H NMR, and 13C NMR spectral data. Most of the synthesized compounds were sensitive against gram positive, gram negative bacterial and fungal strains. Among the synthesized molecules, compounds 5h, and 5i exhibited promising inhibitory activity against all selected fungal strains and gram positive bacteria namely, Staphylococcus aureus, and Enterococcus faecalis. The molecular docking results predicted that the thiazole-thiazolidinedione derivatives bind to the active site protein ATP-binding pocket from E. coli, S. aureus and C. albicans with good interaction energy scores. Ct-DNA was used to evaluate the binding interactions of the selected compounds by means of absorption spectroscopy. To further characterize the drug-likeness and ADME properties were calculated using the Qikprop, the result of present study suggests that thiazole-thiazolidinedione hybrid could be an interesting approach for the design of new antimicrobial agents.Communicated by Ramaswamy H. Sarma.


Subject(s)
Anti-Infective Agents , Thiazolidinediones , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria , Escherichia coli , Fungi , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcus aureus , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacology
3.
Bioorg Chem ; 116: 105381, 2021 11.
Article in English | MEDLINE | ID: mdl-34601297

ABSTRACT

In Search of new microtubule-targeting compounds and to identify a promising Eg5 inhibitory agents, a series of 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff bases molecules (6 a-r) were synthesized using appropriate synthetic method. The synthesized compounds were characterized by using FTIR, Proton NMR, Carbon NMR and mass spectral analysis. All eighteen compounds were evaluated for their Eg5 inhibitory activity. Among the evaluated compounds, only seven compounds are shown inhibitory activity. The results of Steady state ATPase reveled that compounds 6b, 6l and 6p exhibited promising inhibitory activity with IC50 Values of 2.720 ± 0.69, 2.676 ± 0.53 and 2.408 ± 0.46 respectively. Malachite Green Assay results reveled that 6q compound showed better inhibitory activity with IC50 Value of 0.095 ± 0.27. In vitro antioxidant capacity of the synthesized compounds was investigated. A molecular docking studies were performed to evaluate interaction in to binding site of kinesin spindle protein, these interaction influencing may support Eg5 inhibitory activity. The drug like parameters of the eighteen synthesized compounds were also computed using Qikprop software. In conclusion, some of 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff base compounds represent promising drug like agents for discovery of effective anticancer molecules.


Subject(s)
Antioxidants/pharmacology , Drug Design , Hydrazones/pharmacology , Kinesins/antagonists & inhibitors , Molecular Docking Simulation , Schiff Bases/pharmacology , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Kinesins/metabolism , Mice , Molecular Structure , Picrates/antagonists & inhibitors , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...