Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Adv Drug Deliv Rev ; 210: 115342, 2024 07.
Article in English | MEDLINE | ID: mdl-38797316

ABSTRACT

Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.


Subject(s)
Biocompatible Materials , Nanomedicine , Wound Healing , Humans , Wound Healing/drug effects , Wound Healing/immunology , Animals , Immune System , Nanostructures
2.
Health Sci Rep ; 7(3): e1985, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505682

ABSTRACT

Background and Aims: Skin aging is associated with dry skin and a decrease of the strength of the dermoepidermal adhesion, which increases the risk for lacerations (skin tears). Application of leave-on products improves dry skin and seems to reduce skin tear incidence. The aim of this study was to measure the effects of a humectant containing leave-on product on the strength of the dermoepidermal junction in older adult participants with dry skin. Methods: A randomized controlled trial using a split body design was conducted. One forearm was randomly selected and treated with a lipophilic leave-on product containing 5% urea for 8 weeks. The other forearm was the control. The parameters stratum corneum hydration (SCH), transepidermal water loss, pH, roughness, epidermal thickness and skin stiffness were measured at the baseline, Weeks 4 and 8. At Week 8, suction blisters were created and time to blistering was measured. Blister roofs and interstitial fluid were analyzed for Interleukin-1α, 6 and 8. Results: Twelve participants were included. After 8 weeks treatment, SCH was higher (median difference 11.6 AU), and the overall dry skin score (median difference -1) and median roughness (Rz difference -12.2 µm) were lower compared to the control arms. The median group difference for Interleukin-1α was -452 fg/µg total protein (TP) in the blister roofs and -2.2 fg/µg TP in the blister fluids. The median time to blister formation was 7.7 min higher compared to the control arms. Conclusion: The regular application of humectant containing leave-on products improves dry skin and seems to lower inflammation and contribute to the strengthening of the dermoepidermal adhesion. This partly explains how the use of topical leave-on products helps to prevent skin tears.

3.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38256910

ABSTRACT

Inflammatory skin diseases, such as psoriasis, atopic dermatitis, and alopecia areata, occur when the regulatory tolerance of the innate immune system is disrupted, resulting in the activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) inflammatory signaling pathway by interleukin 6 (IL-6) and other key inflammatory cytokines. JAK inhibitors, such as tofacitinib, bind to these enzymes which are coupled to receptors on cell surfaces and block the transcription of inflammatory cytokine-induced genes. The first topical applications are being marketed, yet insufficient effects regarding indications, such as alopecia areata, suggest that improved delivery technologies could help increase the efficacy. In this study, we used sulfated dendritic polyglycerol with caprolactone segments integrated in its backbone (dPGS-PCL), with a molecular weight of 54 kDa, as a degradable carrier to load and solubilize the hydrophobic drug tofacitinib (TFB). TFB loaded in dPGS-PCL (dPGS-PCL@TFB), at a 11 w/w% loading capacity in aqueous solution, showed in an ex-vivo human skin model better penetration than free TFB in a 30:70 (v/v) ethanol/water mixture. We also investigated the anti-inflammatory efficacy of dPGS-PCL@TFB (0.5 w/w%), dPGS-PCL, and free TFB in the water/ethanol mixture by measuring their effects on IL-6 and IL-8 release, and STAT3 and STAT5 activation in ex vivo skin models of simulated inflamed human skin. Our results suggest that dPGS-PCL@TFB reduces the activation of STAT3 and STAT5 by increasing the penetration of the tofacitinib. However, no statistically significant differences with respect to the inhibition of IL-6 and IL-8 were observed in this short incubation time.

4.
Soft Matter ; 20(6): 1282-1292, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38240025

ABSTRACT

C 3-symmetric star-shaped aromatic compounds are known to possess unique characteristics which facilitate their industrial and biomedical applications. Herein, we report the design, synthesis, self-assembly and drug/dye delivery capabilities of C3-symmetric, hexa-substituted benzene-based amphiphiles. The synthesis of the hexa-substituted C3-symmetric core involves C-acetylation of phloroglucinol to yield the corresponding tri-acetyl derivative. This was further subjected to O-propargylation, followed by the carbonyl reduction of acetyl groups to yield the central core. Various hydrophilic (mPEG) and lipophilic units were then incorporated into this core via click and esterification reactions, respectively, to produce a new type of star shaped amphiphiles. So the obtained amphiphilic architectures have a tendency to aggregate in an aqueous medium forming nanosized assemblies with an inner hydrophobic core, allowing the substituents to control the tension-active properties. The critical aggregation concentration of the amphiphiles was evaluated by fluorescence measurement using the dye Nile red as a fluorescent probe. The hydrodynamic diameter of self-assembled aggregates in aqueous solution was studied by dynamic light scattering, while the actual size and morphology were determined by cryo-transmission electron microscopy (cryo-TEM) analysis. The physicochemical properties of the amphiphiles suggested their suitability for exploring their drug delivery applications. In this endeavor, the amphiphiles were utilized for the encapsulation of model hydrophobic entities and studying their subsequent release from their hydrophobic core in a controlled manner. The transport potential of the synthesised amphiphiles was explored for transdermal drug delivery. Furthermore, cytotoxicity studies were conducted using MCF7 and HeLa cells, which indicated that the nanocarriers had no toxic effect on the cells.


Subject(s)
Drug Delivery Systems , Micelles , Humans , HeLa Cells , Fluorescent Dyes/chemistry
5.
Nanoscale Adv ; 5(21): 5923-5931, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37881716

ABSTRACT

Interactions between graphene, with its wide deployment in consumer products, and skin, the body's largest organ and first barrier, are highly relevant with respect to toxicology and dermal delivery. In this work, interaction of polyglycerol-functionalized graphene sheets, with 200 nm average lateral size and different surface charges, and human skin was studied and their potential as topical delivery systems were investigated. While neutral graphene sheets showed no significant skin interaction, their positively and negatively charged counterparts interacted with the skin, remaining in the stratum corneum. This efficient skin interaction bears a warning but also suggests a new topical drug delivery strategy based on the sheets' high loading capacity and photothermal property. Therefore, the immunosuppressive drug tacrolimus was loaded onto positively and negatively charged graphene sheets, and its release measured with and without laser irradiation using liquid chromatography tandem-mass spectrometry. Laser irradiation accelerated the release of tacrolimus, due to the photothermal property of graphene sheets. In addition, graphene sheets with positive and negative surface charges were loaded with Nile red, and their ability to deliver this cargo through the skin was investigated. Graphene sheets with positive surface charge were more efficient than the negatively charged ones in enhancing Nile red penetration into the skin.

6.
Pharmaceutics ; 15(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37514062

ABSTRACT

Bacterial infections are a constant challenge in the management of acute and chronic wounds. Chronic wounds, such as diabetic foot ulcers, have increased significantly in the last few years due to the rise of an aging population. A better understanding of the infectious pathophysiological mechanisms is urgently needed along with new options for the treatment of wound infections and wound-healing disorders. New advances in the preparation of biocompatible dressing materials that can be loaded with antimicrobial drugs may improve the topical treatment of infected wounds. In this study, we investigated the antimicrobial activity of polyvinylpyrrolidone (PVP) foils loaded with ciprofloxacin (Cipro-foils) in the presence of acetic acid as a co-solvent. We used ex vivo human wounds that were infected with two bacterial strains: methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa (PAO1). The effectiveness of the treatment was demonstrated by the quantification of the living bacteria extracted from the wound and the detection of released immunological mediators in skin extracts and in the skin culture media. We found that Cipro-foils effectively treated the infection with both PAO1 and MRSA. Other than PAO1, MRSA had no lytic activity toward skin proteins. MRSA infections increased cytokines' expression and release. Interestingly, treatment with Cipro-foils could partially counteract these effects.

7.
RSC Adv ; 12(36): 23566-23577, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36090422

ABSTRACT

Since biocatalysts manoeuvre most of the physiological activities in living organisms and exhibit extreme selectivity and specificity, their use to trigger physicochemical change in polymeric architectures has been successfully used for targeted drug delivery. Our major interest is to develop lipase responsive nanoscale delivery systems from bio-compatible and biodegradable building blocks. Herein, we report the synthesis of four novel non-ionic Gemini amphiphiles using a chemo-enzymatic approach. A symmetrical diglycerol has been used as a core that is functionalised with alkyl chains for the creation of a hydrophobic cavity, and for aqueous solubility (polyethylene glycol) monomethyl ether (mPEG) is incorporated. Such systems can exhibit a varied self-assembly behaviour leading to the observance of different morphological structures. The aggregation behaviour of the synthesised nanocarrier was studied by dynamic light scattering (DLS) and critical aggregation concentration (CAC) measurements. The nanotransport potential of amphiphiles was investigated for hydrophobic guest molecules, i.e. Nile red, nimodipine and curcumin. Cytotoxicity of the amphiphiles was studied using HeLa and MCF7 cell lines at different concentrations, i.e. 0.05, 0.1, and 0.5 mg mL-1. All nanocarriers were found to be non-cytotoxic up to a concentration of 0.1 mg mL-1. Confocal laser scanning microscopy (cLSM) study suggested the uptake of encapsulated dye in the cytosol of the cancer cells within 4 h, thus implying that amphiphilic systems can efficiently transport hydrophobic drug molecules into cells. The biomedical application of the synthesised Gemini amphiphiles was also investigated for dermal drug delivery. In addition, the enzyme-mediated release study was performed that demonstrated 90% of the dye is released within three days. All these results supported the capability of nanocarriers in drug delivery systems.

8.
Cells ; 11(7)2022 04 02.
Article in English | MEDLINE | ID: mdl-35406762

ABSTRACT

Adult stem cells have been extensively investigated for tissue repair therapies. Adipose-derived stem cells (ASCs) were shown to improve wound healing by promoting re-epithelialization and vascularization as well as modulating the inflammatory immune response. In this study, we used ex vivo human skin cultured in a six-well plate with trans-well inserts as a model for superficial wounds. Standardized wounds were created and treated with allogeneic ASCs, ASCs conditioned medium (ASC-CM), or cell culture medium (DMEM) supplemented with fetal calf serum (FCS). Skin viability (XTT test), histology (hematoxylin and eosin, H and E), ß-catenin expression as well as inflammatory mediators and growth factors were monitored over 12 days of skin culture. We observed only a moderate time-dependent decrease in skin metabolic activity while skin morphology was preserved, and re-epithelialization occurred at the wound edges. An increase in ß-catenin expression was observed in the newly formed epithelia, especially in the samples treated with ASC-CM. In general, increased growth factors and inflammatory mediators, e.g., hepatocytes growth factor (HGF), platelet-derived growth factor subunit AA (PDGF-AA), IL-1α, IL-7, TNF-α, and IL-10, were observed over the incubation time. Interestingly, different expression profiles were observed for the different treatments. Samples treated with ASC-CM significantly increased the levels of inflammatory cytokines and PDGF-AA with respect to control, whereas the treatment with ASCs in DMEM with 10% FCS resulted in significantly increased levels of fibroblast growth factor-basic (FGF-basic) and moderate increases of immunomodulatory cytokines. These results confirm that the wound microenvironment can influence the type of mediators secreted by ASCs and the mode as to how they improve the wound healing process. Comparative investigations with pre-activated ASCs will elucidate further aspects of the wound healing mechanism and improve the protocols of ACS application.


Subject(s)
Stem Cells , beta Catenin , Adult , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Humans , Inflammation Mediators/metabolism , beta Catenin/metabolism
9.
Int J Nanomedicine ; 16: 7137-7151, 2021.
Article in English | MEDLINE | ID: mdl-34712046

ABSTRACT

INTRODUCTION: Rapamycin (Rapa) is an immunosuppressive macrolide that inhibits the mechanistic target of rapamycin (mTOR) activity. Thanks to its anti-proliferative effects towards different cell types, including keratinocytes and T cells, Rapa shows promise in the treatment of skin diseases characterized by cell hyperproliferation. However, Rapa skin penetration is limited due to its lipophilic nature (log P = 4.3) and high molecular weight (MW = 914 g/mol). In previous studies, new microenvironment-sensitive core multishell (CMS) nanocarriers capable of sensing the redox state of inflamed skin were developed as more efficient and selective vehicles for macrolide delivery to inflamed skin. METHODS: In this study, we tested such redox-sensitive CMS nanocarriers using an inflammatory skin model based on human skin explants co-cultured with Jurkat T cells. Serine protease (SP) was applied on skin surface to induce skin barrier impairment and oxidative stress, whereas phytohaemagglutinin (PHA), IL-17A, and IL-22 were used to activate Jurkat cells. Activation markers, such as CD45 and CD69, phosphorylated ribosomal protein S6 (pRP-S6), and IL-2 release were monitored in activated T cells, whereas pro-inflammatory cytokines were measured in skin extracts and culture medium. RESULTS: We found that alteration of skin barrier proteins corneodesmosin (CDSN), occludin (Occl), and zonula occludens-1 (ZO-1) as well as oxidation-induced decrease of free thiol groups occurred upon SP-treatment. All Rapa formulations exerted inhibitory effects on T cells after penetration across ex vivo skin. No effects on skin inflammatory markers were detected. The superiority of the oxidative-sensitive CMS nanocarriers over the other formulations was observed with regard to drug delivery as well as downregulation of IL-2 release. CONCLUSION: Overall, our results demonstrate that nanocarriers addressing features of diseased skin are promising approaches to improve the topical delivery of macrolide drugs.


Subject(s)
Nanoparticles , Skin Absorption , Administration, Cutaneous , Anti-Inflammatory Agents/metabolism , Coculture Techniques , Dexamethasone , Drug Carriers/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Sirolimus , Skin/metabolism
10.
Pharmaceutics ; 13(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34371785

ABSTRACT

Topical wound management is often a challenge due to the poor penetration of antimicrobials in wound tissue and across the biofilm matrix where bacteria are embedded. Surfactants have been used for decades to improve the stability of formulations, increase drug solubility, and enhance penetration. In this study, we screened different detergents with respect to their cytotoxicity and their ability to improve the penetration of poly-lactic-co-glycolic acid (PLGA) particles in wound tissue. Among the tested surfactants, Kolliphor SLS and Tween 80 increased the penetration of PLGA particles and had a limited cytotoxicity. Then, these surfactants were used to formulate PLGA particles loaded with the poorly water-soluble antibiotic ciprofloxacin. The antimicrobial efficacy of the formulations was tested in a wound infection model based on human ex vivo skin. We found that even though PLGA particles had the same antimicrobial efficiency than the particle-free drug formulation, thanks to their solubilizing and anti-biofilm properties, the surfactants remarkably improved the antimicrobial activity of ciprofloxacin with respect to the drug formulation in water. We conclude that the use of Tween 80 in antimicrobial formulations might be a safe and efficient option to improve the topical antimicrobial management of chronic wound infections.

11.
ACS Omega ; 6(18): 12213-12222, 2021 May 11.
Article in English | MEDLINE | ID: mdl-34056375

ABSTRACT

Drug penetration in human skin ex vivo following a modification of skin barrier permeability is systematically investigated by scanning transmission X-ray microscopy. Element-selective excitation is used in the O 1s regime for probing quantitatively the penetration of topically applied rapamycin in different formulations with a spatial resolution reaching <75 nm. The data were analyzed by a comparison of two methods: (i) two-photon energies employing the Beer-Lambert law and (ii) a singular value decomposition approach making use of the full spectral information in each pixel of the X-ray micrographs. The latter approach yields local drug concentrations more reliably and sensitively probed than the former. The present results from both approaches indicate that rapamycin is not observed within the stratum corneum of nontreated skin ex vivo, providing evidence for the observation that this high-molecular-weight drug inefficiently penetrates intact skin. However, rapamycin is observed to penetrate more efficiently the stratum corneum when modifications of the skin barrier are induced by the topical pretreatment with the serine protease trypsin for variable time periods ranging from 2 to 16 h. After the longest exposure time to serine protease, the drug is even found in the viable epidermis. High-resolution micrographs indicate that the lipophilic drug preferably associates with corneocytes, while signals found in the intercellular lipid compartment were less pronounced. This result is discussed in comparison to previous work obtained from low-molecular-weight lipophilic drugs as well as polymer nanocarriers, which were found to penetrate the intact stratum corneum exclusively via the lipid layers between the corneocytes. Also, the role of the tight junction barrier in the stratum granulosum is briefly discussed with respect to modifications of the skin barrier induced by enhanced serine protease activity, a phenomenon of clinical relevance in a range of inflammatory skin disorders.

12.
ACS Biomater Sci Eng ; 7(6): 2485-2495, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33905661

ABSTRACT

A synthetic route for oxidation-sensitive core-multishell (osCMS) nanocarriers was established, and their drug loading and release properties were analyzed based on their structural variations. The nanocarriers showed a drug loading of 0.3-3 wt % for the anti-inflammatory drugs rapamycin and dexamethasone and the photosensitizer meso-tetra-hydroxyphenyl-porphyrin (mTHPP). Oxidative processes of the nanocarriers were probed in vitro by hydrogen peroxide, and the degradation products were identified by infrared spectroscopy supported by ab initio calculations, yielding mechanistic details on the chemical changes occurring in redox-sensitive nanocarriers. Oxidation-triggered drug release of the model drug Nile Red measured and assessed by time-dependent fluorescence spectroscopy showed a release of up to 80% within 24 h. The drug delivery capacity of the new osCMS nanocarriers was tested in ex vivo human skin with and without pretreatments to induce local oxidative stress. It was found that the delivery of mTHPP was selectively enhanced in skin under oxidative stress. The number and position of the thioether groups influenced the physicochemical as well as drug delivery properties of the carriers.


Subject(s)
Drug Carriers , Nanoparticles , Dexamethasone , Drug Delivery Systems , Humans , Oxidation-Reduction
13.
Eur J Dermatol ; 31(1): 22-31, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33586659

ABSTRACT

BACKGROUND: The upper follicular compartment, a well-known reservoir of cutaneous microbiota, constitutes a space for intensive cross-barrier dialogue. The lower follicle comprises the bulb and bulge, structures with relative immune-privileged status, crucial for physiological cycling, and widely considered to be microbial-free. OBJECTIVES: Following our initial immunohistochemical screening for regulatory cytokines and defensin expression in anagen hair follicles, we aimed to confirm our results with a follow-up ELISA investigation. We postulated that exposure to microbial components may trigger expression, and thus opted to investigate microbial presence in this area. MATERIALS & METHODS: We performed immunohistochemical staining for selected cytokines and antimicrobial peptides, and Gram and Giemsa staining on tissue sections from healthy individuals. Based on ELISA analyses, we confirmed a marked presence of IL-17A- and HBD2 in infrainfundibular compartments from plucked anagen hair follicles of 12 individuals (six females, six males; frontal and occipital scalp sites). 16S rRNA sequencing on microbial DNA extracted from lower follicles, as well as fluorescence in situ hybridization (FISH) were applied to explore bacterial presence in the infrainfundibular compartments. RESULTS: 16S rRNA sequencing yielded reproducible data of bacterial presence in infrainfundibular compartments of plucked scalp follicles; Lawsonella clevelandensis, Staphylococcaceae and Propionibacteriaceae were the most abundant bacteria. Also, FISH revealed biofilm structures formed by Cutibacterium acnes (formerly Propionibacterium acnes) and Staphylococcus sp. below the infundibulum. CONCLUSION: As the skin microbiome largely influences the local immune system, the presence of bacteria in proximity to follicular immune-privileged areas may be of relevance to hair cycling in health and disease.


Subject(s)
DNA, Bacterial/analysis , Hair Follicle/chemistry , Pore Forming Cytotoxic Proteins/analysis , Adult , Female , Humans , Male , Scalp , Young Adult
14.
Biomater Sci ; 9(3): 712-725, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33285562

ABSTRACT

Among polymeric nanocarriers, nanogels are especially promising non-irritating delivery vehicles to increase dermal bioavailability of therapeutics. However, accurately tailoring defined interactions with the amphiphilic skin barrier is still challenging. To address this limited specificity, we herein present a new strategy to combine biocompatible nanogels with the outstanding skin interaction properties of sulfoxide moieties. These chemical motifs are known from dimethyl sulfoxide (DMSO), a potent chemical penetration enhancer, which can often cause undesired skin damage upon long-term usage. By covalently functionalizing the nanogels' polymer network with such methyl sulfoxide side groups, tailor-made dermal delivery vehicles are developed to circumvent the skin disrupting properties of the small molecules. Key to an effective nanogel-skin interaction is assumed to be the specific nanogel amphiphilicity. This is examined by comparing the delivery efficiency of sulfoxide-based nanogels (NG-SOMe) with their corresponding thioether (NG-SMe) and sulfone-functionalized (NG-SO2Me) analogues. We demonstrate that the amphiphilic sulfoxide-based NG-SOMe nanogels are superior in their interaction with the likewise amphipathic stratum corneum (SC) showing an increased topical delivery efficacy of Nile red (NR) to the viable epidermis (VE) of excised human skin. In addition, toxicological studies on keratinocytes and fibroblasts show good biocompatibility while no perturbation of the complex protein and lipid distribution is observed via stimulated Raman microscopy. Thus, our NG-SOMe nanogels show high potential to effectively emulate the skin penetration enhancing properties of DMSO without its negative side effects.


Subject(s)
Dimethyl Sulfoxide , Skin , Humans , Nanogels , Polymers/metabolism , Skin/metabolism , Skin Absorption
15.
Wound Repair Regen ; 29(2): 270-279, 2021 03.
Article in English | MEDLINE | ID: mdl-33347667

ABSTRACT

Evidence suggests that preventive dressings applied on sacral skin help to prevent pressure ulcers. However, possible performance differences of different dressing types are unclear. An exploratory randomized crossover trial with intra-individual comparisons was conducted to compare the effects of three different multi-layer foam dressings (Mepilex Border Sacrum, ALLEVYN Life Sacrum and Optifoam Gentle Sacrum) compared to no dressing on the sacral skin. Healthy female volunteers (n = 12, mean age 72 years) wore three different dressings on their sacral skin for 3.5 hours while lying supine on a standard hospital mattress. At regular intervals, subjects performed standardized movements to enhance shear loads. Skin surface temperature, stratum corneum hydration, erythema, skin roughness and the interleukin 1 alpha (IL-1α) concentration per total protein were measured at baseline and after the lying periods. After 3.5 hours, the median skin temperature increased in all four groups between 3.0°C and 3.8°C with only minor differences between the no dressing and the dressing groups. Median stratum corneum hydration increased during the lying period in all groups with highest increases in the Optifoam Gentle Sacrum (7.3 arbitrary units) and no dressing group (7.0 arbitrary units). There was a median decrease of the mean roughness (Rz) in the Optifoam Gentle Sacrum group of -6.3 µm but no relevant changes in the other groups. After loading, the erythema index was highest in the ALLEVYN Life Sacrum and no dressing groups. Highest releases of IL-1α were observed in the ALLEVYN Life Sacrum and Optifoam Gentle Sacrum groups, in the Mepilex Border Sacrum group changes were minor. Study results indicate, that the application of preventive dressings on sacral skin during loading do not cause additional occlusion compared to loading without dressings when lying supine. Different dressings cause different cutaneous responses during loading.


Subject(s)
Pressure Ulcer , Aged , Bandages , Cross-Over Studies , Female , Humans , Pressure Ulcer/prevention & control , Sacrum , Wound Healing
16.
Exp Dermatol ; 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33090548

ABSTRACT

The anatomy of the hair follicle and the dynamics of its barrier provide a special space for interactions between macromolecules and the underlying tissue. Translocation across the hair follicle epithelium and immune recognition have been confirmed for proteins, nucleic acids, engineered particles, virus particles and others. Tissue responses can be modulated by pro-inflammatory stimuli as demonstrated in penetration and transcutaneous immunization studies. Even under physiological conditions, hair follicle openings are filled with exogenous material ranging from macromolecules, engineered particles to natural particles including diverse communities of microbes. The exposed position of the infundibulum suggests that local inflammatory insults could disturb the finely tuned balance and may trigger downstream responses that initiate or facilitate local outbreaks of inflammatory hair diseases typically occurring in close spatial association with the infundibulum as observed in cicatricial alopecia. The question as to how microbial colonization or deposition of contaminants on the surface of the hair follicle epithelium interact with the barrier status under the influence of individual predisposition, may help us understand local flare-ups of inflammatory hair diseases. Specifically, learning more about skin barrier alterations in the different types of inflammatory hair diseases and cross-talk with exogenous compounds could give new insights in this less explored aspect of hair follicle homeostasis. Such knowledge may not only be used to develop supportive measures to maintain a healthy scalp. It may have wider implications for our understanding on how external factors influence inflammation and immunological responses in the skin.

17.
Pharmaceutics ; 12(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927792

ABSTRACT

Standard experimental set-ups for the assessment of skin penetration are typically performed on skin explants with an intact skin barrier or after a partial mechanical or chemical perturbation of the stratum corneum, but they do not take into account biochemical changes. Among the various pathological alterations in inflamed skin, aberrant serine protease (SP) activity directly affects the biochemical environment in the superficial compartments, which interact with topically applied formulations. It further impacts the skin barrier structure and is a key regulator of inflammatory mediators. Herein, we used short-term cultures of ex vivo human skin treated with trypsin and plasmin as inflammatory stimuli to assess the penetration and biological effects of the anti-inflammatory drug dexamethasone (DXM), encapsulated in core multishell-nanocarriers (CMS-NC), when compared to a standard cream formulation. Despite a high interindividual variability, the combined pretreatment of the skin resulted in an average 2.5-fold increase of the transepidermal water loss and swelling of the epidermis, as assessed by optical coherence tomography, as well as in a moderate increase of a broad spectrum of proinflammatory mediators of clinical relevance. The topical application of DXM-loaded CMS-NC or DXM standard cream revealed an increased penetration into SP-treated skin when compared to untreated control skin with an intact barrier. Both formulations, however, delivered sufficient amounts of DXM to effectively suppress the production of interleukin-6 (IL-6), interleukin-8 (IL-8) and Thymic Stromal Lymphopoietin (TSLP). In conclusion, we suggest that the herein presented ex vivo inflammatory skin model is functional and could improve the selection of promising drug delivery strategies for anti-inflammatory compounds at early stages of development.

18.
ACS Appl Mater Interfaces ; 12(27): 30136-30144, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32519848

ABSTRACT

The use of penetration enhancers (chemical or physical) has been proven to dramatically improve the penetration of therapeutics. Nevertheless, their use poses great risks, as they can lead to permanent damage of the skin, reduce its barrier efficiency, and result in the intrusion of harmful substances. Among the most used skin penetration enhancers, water is greatly accepted because skin quickly recovers from its exposure. Nanocapsules (NCs) represent a promising combination of the carrier system and penetration enhancer because their water-containing void combined with their polymer-based shell can be used to induce high local skin hydration, while simultaneously aiding the transport of drugs across the skin barrier. In this study, NCs were synthesized with a void core of 100 nm in diameter, a thermoresponsive shell based on different ratios of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) as thermoresponsive polymers, and dendritic polyglycerol as a macromolecular cross-linker. These NCs can shrink or swell upon a thermal trigger, which was used to induce the release of the entrapped water in a controlled fashion. The interactions and effects of thermoresponsive NCs on the stratum corneum of excised human skin were investigated using fluorescence microscopy, high-resolution optical microscopy, and stimulated Raman spectromicroscopy. It could be observed that the thermoresponsive NCs increase the amount of deuterated water that penetrated into the viable epidermis. Moreover, NCs increased the skin penetration of a high-molecular weight dye (Atto Oxa12 NHS ester, MW = 835 g/mol) with respect to formulations in water or 30% DMSO, emphasizing the features of the NCs as a skin penetration enhancer.


Subject(s)
Glycerol/chemistry , Nanocapsules/chemistry , Polymers/chemistry , Skin/metabolism , Humans , Microscopy, Fluorescence , Nanoparticles/chemistry , Spectrum Analysis, Raman
19.
Pharmaceutics ; 13(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383706

ABSTRACT

A synthetic route for redox-sensitive and non-sensitive core multi-shell (CMS) carriers with sizes below 20 nm and narrow molecular weight distributions was established. Cyclic voltammetric measurements were conducted characterizing the redox potentials of reduction-sensitive CMS while showcasing its reducibility through glutathione and tris(2-carboxyethyl)-phosphine as a proof of concept. Measurements of reduction-initiated release of the model dye Nile red by time-dependent fluorescence spectroscopy showed a pronounced release for the redox-sensitive CMS nanocarrier (up to 90% within 24 h) while the non-sensitive nanocarriers showed no release in PBS. Penetration experiments using ex vivo human skin showed that the redox-sensitive CMS nanocarrier could deliver higher percentages of the loaded macrocyclic dye meso-tetra (m-hydroxyphenyl) porphyrin (mTHPP) to the skin as compared to the non-sensitive CMS nanocarrier. Encapsulation experiments showed that these CMS nanocarriers can encapsulate dyes or drugs with different molecular weights and hydrophobicity. A drug content of 1 to 6 wt% was achieved for the anti-inflammatory drugs dexamethasone and rapamycin as well as fluorescent dyes such as Nile red and porphyrins. These results show that redox-initiated drug release is a promising strategy to improve the topical drug delivery of macrolide drugs.

20.
Pharmaceutics ; 11(10)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614886

ABSTRACT

Topical treatment of wound infections is often a challenge due to limited drug availability at the site of infection. Topical drug delivery is an attractive option for reducing systemic side effects, provided that a more selective and sustained local drug delivery is achieved. In this study, a poorly water-soluble antibiotic, ciprofloxacin, was loaded on polyvinylpyrrolidone (PVP)-based foils and nanofiber mats using acetic acid as a solubilizer. Drug delivery kinetics, local toxicity, and antimicrobial activity were tested on an ex vivo wound model based on full-thickness human skin. Wounds of 5 mm in diameter were created on 1.5 × 1.5 cm skin blocks and treated with the investigated materials. While nanofiber mats reached the highest amount of delivered drug after 6 h, foils rapidly achieved a maximum drug concentration and maintained it over 24 h. The treatment had no effect on the overall skin metabolic activity but influenced the wound healing process, as observed using histological analysis. Both delivery systems were efficient in preventing the growth of Pseudomonas aeruginosa biofilms in ex vivo human skin. Interestingly, foils loaded with 500 µg of ciprofloxacin accomplished the complete eradication of biofilm infections with 1 × 109 bacteria/wound. We conclude that antimicrobial-loaded resorbable PVP foils and nanofiber mats are promising delivery systems for the prevention or topical treatment of infected wounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...