Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 268: 128-138, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30077169

ABSTRACT

The Integrated Fixed-Film Activated Sludge (IFAS) process is an advanced biological wastewater treatment process that integrates biofilm carriers within conventional activated sludge to uncouple the sludge retention time for nitrifiers and heterotrophic bacteria. In this study, we incorporated microalgae into the IFAS configuration for photo-oxygenation and evaluated the symbiotic reaction between microalgae and bacteria for both suspended solids and IFAS biofilm media. In a sequencing batch mode, the microalgae-IFAS system removed more than 99% ammonia and 51% phosphorous without the need for mechanical aeration. Biofilm microprofiles revealed localized photo-oxygenation by the algal biofilm and nitrification by nitrifiers on the IFAS media. Genetic sequencing showed that the addition of microalgae to the IFAS system promoted significant changes in the bacterial community structure and altered metabolic activity of several bacterial groups. Overall, this research represents a novel strategy for reducing energy consumption while meeting stringent effluent standards using a hybrid symbiotic microalgae-IFAS technology.


Subject(s)
Biofilms , Microalgae , Sewage , Ammonia , Bioreactors , Nitrification , Nitrogen , Wastewater
2.
Water Environ Res ; 77(5): 455-64, 2005.
Article in English | MEDLINE | ID: mdl-16274079

ABSTRACT

Enhanced biological phosphorous removal (EBPR) performance was found to be adequate with reduced return-activated sludge (RAS) flows (50% of available RAS) to the anaerobic tank and smaller-than-typical anaerobic zone volume (1.08 hours hydraulic retention time [HRT]). Three identical parallel biological nutrient removal pilot plants were fed with strong, highly fermented (160 mg/L volatile fatty acids [VFAs]), domestic and industrial wastewater from a full-scale wastewater treatment facility. The pilot plants were operated at 100, 50, 40, and 25% RAS (percent of available RAS) flows to the anaerobic tank, with the remaining RAS to the anoxic tank. In addition, varying anaerobic HRT (1.08 and 1.5 hours) and increased hydraulic loading (35% increase) were examined. The study was divided into four phases, and the effect of these process variations on EBPR were studied by having one different variable between two identical systems. The most significant conclusion was that returning part of the RAS to the anaerobic zone did not decrease EBPR performance; instead, it changed the location of phosphorous release and uptake. Bringing less RAS to the anaerobic and more to the anoxic tank decreased anaerobic phosphorus release and increased anoxic phosphorus release (or decreased anoxic phosphorus uptake). Equally important is that, with VFA-rich influent wastewater, excessive anaerobic volume was shown to hurt overall phosphorus removal, even when it resulted in increased anaerobic phosphorus release.


Subject(s)
Medical Waste Disposal/methods , Phosphorus/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Oxygen/chemistry
3.
Water Environ Res ; 76(1): 23-8, 2004.
Article in English | MEDLINE | ID: mdl-15058461

ABSTRACT

A preliminary bench-scale study of parallel University of Cape Town (UCT) biological nutrient removal systems showed improvement in anoxic denitrification rates resulting from prefermentation of a septic (i.e., high volatile fatty acid [VFA] content), phosphorus-limited (i.e., total chemical oxygen demand/total phosphorus [TP] ratio < 40:1) wastewater. Net phosphorus removals due to enhanced biological phosphorus removal (EBPR) were only improved marginally by prefermentation in spite of significant increases in anaerobic phosphorus release, polyhydroxyalkanoate formation, and higher anoxic and aerobic uptakes. This probably was due to the high VFA/TP ratio in the raw influent relative to the VFA requirements for EBPR because enough VFAs were already present for phosphorus removal prior to prefermentation. An additional assessment of prefermentation using parallel UCT systems with step feed of 50% of the influent to the anoxic zone was completed. This second phase quantified the effect of prefermentation in a step-feed scenario, which prioritized prefermentation use to enhance denitrification rather than EBPR. While specific denitrification rates in the anoxic zone were significantly improved by prefermentation, high denitrification in the clarifiers and aerobic zones (simultaneous denitrification) made definitive conclusions concerning the potential improvements in total system nitrogen removal questionable. The prefermented system always showed superior values of the zone settling velocity and sludge volume index and the improvement became increasingly statistically significant when the prefermenter was performing well.


Subject(s)
Nitrogen/isolation & purification , Phosphorus/metabolism , Waste Disposal, Fluid/methods , Water Purification/methods , Bacteria, Anaerobic , Bioreactors , Fatty Acids, Volatile/metabolism , Fermentation , Oxygen , Phosphorus/isolation & purification
4.
Water Res ; 36(14): 3473-8, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12230192

ABSTRACT

Eighteen anaerobic/aerobic batch experiments were conducted with a variety of volatile fatty acids (VFAs) on a sequencing batch reactor (SBR) population displaying enhanced biological phosphorus removal (EBPR). A statistically significant (P << 0.01 for all variables) correlation between aerobic phosphorus uptake and polyhydroxyalkanoates (PHAs) quantity and form was observed. The results suggest that poly-3-hydroxy-butyrate (3HB) results in significantly higher aerobic phosphorus (P) uptake per unit mmoles as carbon (mmoles-C) than poly-3-hydroxy-valerate (3HV). The results showed that acetic and isovaleric acids resulted in higher P removals (relative to propionic and valeric acids) during EBPR batch experiments not because of higher PHAs quantity, but largely because the predominant type was 3HB rather than 3HV. In contrast propionic and valeric acids resulted in 3HV, and showed much lower aerobic P uptake per unit PHAs.


Subject(s)
Bioreactors , Fatty Acids, Volatile/metabolism , Phosphorus/metabolism , Phosphorus/pharmacokinetics , Bacteria, Aerobic , Bacteria, Anaerobic , Water Purification
5.
Water Environ Res ; 74(1): 57-67, 2002.
Article in English | MEDLINE | ID: mdl-11995868

ABSTRACT

Anaerobic-aerobic batch experiments indicated that poly-hydroxy-alkanoate (PHA) form was important in determining the net phosphorus removal resulting from different volatile fatty acids (VFAs). Poly-3-hydroxy-butyrate (3HB) content was found to correlate fairly well with higher observed aerobic phosphorus uptake per unit PHA carbon degraded. Poly-3-hydroxy-valerate (3HV) correlated with lower aerobic phosphorus uptakes per unit PHA carbon degraded. These experiments, conducted with synthetic wastewater, imply that VFA speciation might have a significant effect on aerobic phosphorus uptakes and net phosphorus removal. In addition, the model parameter fP.UPT (Barker and Dold, 1997) could vary with the proportion of acetic to propionic acid received (i.e., the acetic/propionic acid ratio may be an important parameter for these systems). Carbohydrate data implied that the lower aerobic phosphorus uptake resulting from 3HV might have been caused by a greater fraction of PHA carbon shunting to carbohydrate biosynthesis during aerobiosis.


Subject(s)
Biomass , Fatty Acids, Volatile/metabolism , Phosphorus/metabolism , Polyesters/metabolism , Acetic Acid/pharmacology , Aerobiosis , Anaerobiosis , Bioreactors , Biotransformation/drug effects , Carbohydrates/biosynthesis , Carbon/metabolism , Hemiterpenes , Hydrogen-Ion Concentration , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , NAD/biosynthesis , Pentanoic Acids/pharmacology , Polyesters/chemistry , Propionates/pharmacology , Valerates/chemistry , Valerates/metabolism , Valerates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...