Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35454719

ABSTRACT

The objective was to conduct a bio-mapping of microbial indicators to determine statistical process control (SPC) parameters at a beef processing plant to establish microbiological baselines and process control parameters to support food safety management decisions. EZ-ReachTM swabs were used to collect 100 cm2 area samples at seven different locations throughout the beef processing line at four different regions on the carcass. Each of the eight sampling days evaluated included three samples collected per sampling location/carcass region for a total of 84 samples per day. Enumeration of total aerobic bacteria, Enterobacteriaceae, and Escherichia coli was performed on each sample. Microbial SPC parameters were estimated for each sampling point. Statistical differences between sampling points for all carcass locations (p < 0.001) followed an overall trend with higher values at pre- and post-evisceration with a continuous decrease until final interventions with a slight increase in counts during the chilling process and a final increase after fabrication. Variability at sampling points is the result of the nature of the process and highlights open opportunities for improvement of the food safety system. Microbial baselines and SPC parameters will help support decision making for continuous process improvement, validation of intervention schemes, and corrective action implementation for food safety management.

2.
Foods ; 10(9)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34574215

ABSTRACT

The objective of this experiment was to compare the antimicrobial efficacy of an aqueous ozone intervention and a lactic acid solution on natural microbiota of variety meats in a commercial beef processing plant. EZ-Reach™ swabs were used to collect 100 cm2 area samples before and after ozone and lactic acid intervention application for three different offals (head, heart, and liver). Each repetition included 54 samples per variety meat and antimicrobial for a total of 162 samples per repetition. Enumeration of total aerobic bacteria (APC) and Escherichia coli (EC) was performed on each sample. Microbial counts for both microorganisms evaluated were significantly reduced (p < 0.001) after lactic acid immersion (2-5%) and ozone intervention for all variety meats, with the exception of ozone intervention in EC counts of the heart samples. APC after lactic acid intervention was reduced on average by 1.73, 1.66, and 1.50 Log CFU/sample in the head, heart, and liver, respectively, while after ozone intervention, counts were reduced on average by 1.66, 0.52, and 1.20 Log CFU/sample. EC counts after lactic acid intervention were reduced on average by 0.96, 0.79, and 1.00 Log CFU/sample in the head, heart, and liver, respectively, while after ozone intervention, counts were reduced on average by 0.75, 0.62, and 1.25 Log CFU/sample. The aqueous ozone antimicrobial scheme proved to be a promising intervention for the in-plant reduction of indicator levels in variety meats, specifically heads, hearts, and livers.

3.
Foods ; 10(5)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064320

ABSTRACT

The purpose of this study was to evaluate the antimicrobial efficacy of an aqueous ozone (Bio-Safe) treatment and lactic acid solutions on natural microbiota and E. coli O157:H7 and Salmonella surrogates on beef carcasses and trim in a commercial beef processing plant. For every repetition, 40 carcass and 40 trim swabs (500 cm2) were collected. Samples were taken using EZ-ReachTM swabs, and plated into aerobic plate count (APC), coliform, and E. coli PetrifilmTM for enumeration. In addition, a five-strain cocktail (MP-26) of E. coli surrogates was inoculated onto trim. For every trim surrogate repetition, 30 trim pieces were sampled after attachment and after ozone intervention. Samples were diluted and counts were determined using the TEMPO® system for E. coli enumeration. Ozone and lactic acid interventions significantly reduced (p < 0.003) bacterial counts in carcasses and trim samples. Moreover, lactic acid further reduced APC and coliforms in trim samples compared to ozone intervention (p < 0.009). In the surrogate trials, ozone significantly reduced (p < 0.001) surrogate concentration. Historical data from the plant revealed a reduction (p < 0.001) of presumptive E. coli O157:H7 in trim after a full year of ozone intervention implementation. The novel technology for ozone generation and application as an antimicrobial can become an alternative option that may also act synergistically with existing interventions, minimizing the risk of pathogens such as Salmonella and E. coli O157:H7.

SELECTION OF CITATIONS
SEARCH DETAIL
...