Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 16(9): e202300073, 2023 09.
Article in English | MEDLINE | ID: mdl-37264992

ABSTRACT

Photoplethysmography is a recent addition to physio-logging in Atlantic salmon which can be used for pulse oximetry provided that the properties for light propagation in salmon tissues are known. In this work, optical properties of three constituents of Atlantic salmon blood have been characterized using a photo spectrometer in the VIS-NIR range (450-920 nm). Furthermore, Atlantic salmon blood cell size has been measured using a Coulter counter as part of light scattering property evaluations. Results indicate that plasma contributes little to scattering and absorption for wavelengths typically used in pulse oximetry as opposed to blood cells which are highly scattering. Extinction spectra for oxygenated and deoxygenated hemoglobin indicate that Atlantic salmon hemoglobin is similar to that in humans. Pulse oximetry sensors originally intended for human applications may thus be used to estimate blood oxygenation levels for this species.


Subject(s)
Salmo salar , Animals , Humans , Oximetry , Hemoglobins
2.
J Biophotonics ; 13(10): e202000108, 2020 10.
Article in English | MEDLINE | ID: mdl-32558341

ABSTRACT

In vitro wound models are useful for research on wound re-epithelialization. Hyperspectral imaging represents a non-destructive alternative to histology analysis for detection of re-epithelialization. This study aims to characterize the main optical behavior of a wound model in order to enable development of detection algorithms. K-Means clustering and agglomerative analysis were used to group spatial regions based on the spectral behavior, and an inverse photon transport model was used to explain differences in optical properties. Six samples of the wound model were prepared from human tissue and followed over 22 days. Re-epithelialization occurred at a mean rate of 0.24 mm2 /day after day 8 to 10. Suppression of wound spectral features was the main feature characterizing re-epithelialized and intact tissue. Modeling the photon transport through a diffuse layer placed on top of wound tissue properties reproduced the spectral behavior. The missing top layer represented by wounds is thus optically detectable using hyperspectral imaging.


Subject(s)
Re-Epithelialization , Wound Healing , Humans , Models, Biological
3.
J Biomed Opt ; 21(10): 101413, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27228458

ABSTRACT

Hyperspectral imaging (HSI) is a noncontact and noninvasive optical modality emerging the field of medical research. The goal of this study was to determine the ability of HSI and image segmentation to discriminate burn wounds in a preclinical porcine model. A heated brass rod was used to introduce burn wounds of graded severity in a pig model and a sequence of hyperspectral data was recorded up to 8-h postinjury. The hyperspectral images were processed by an unsupervised spectral­spatial segmentation algorithm. Segmentation was validated using results from histology. The proposed algorithm was compared to K-means segmentation and was found superior. The obtained segmentation maps revealed separated zones within the burn sites, indicating a variation in burn severity. The suggested image-processing scheme allowed mapping dynamic changes of spectral properties within the burn wounds over time. The results of this study indicate that unsupervised spectral­spatial segmentation applied on hyperspectral images can discriminate burn injuries of varying severity.


Subject(s)
Burns/diagnostic imaging , Image Processing, Computer-Assisted/standards , Spectrum Analysis , Algorithms , Animals , Reproducibility of Results , Swine
4.
J Biomed Opt ; 20(9): 096011, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26359812

ABSTRACT

Rheumatoid arthritis (RA) is a disease that frequently leads to joint destruction. It has a high incidence rate worldwide, and the disease significantly reduces patients' quality of life. Detecting and treating inflammatory arthritis before structural damage to the joint has occurred is known to be essential for preventing patient disability and pain. Existing diagnostic technologies are expensive, time consuming, and require trained personnel to collect and interpret data. Optical techniques might be a fast, noninvasive alternative. Hyperspectral imaging (HSI) is a noncontact optical technique which provides both spectral and spatial information in one measurement. In this study, the feasibility of HSI in arthritis diagnostics was explored by numerical simulations and optimal imaging parameters were identified. Hyperspectral reflectance and transmission images of RA and normal human joint models were simulated using the Monte Carlo method. The spectral range was 600 to 1100 nm. Characteristic spatial patterns for RA joints and two spectral windows with transmission were identified. The study demonstrated that transmittance images of human joints could be used as one parameter for discrimination between arthritic and unaffected joints. The presented work shows that HSI is a promising imaging modality for the diagnostics and follow-up monitoring of arthritis in small joints.


Subject(s)
Arthritis, Rheumatoid/diagnosis , Optical Imaging/methods , Finger Joint/chemistry , Finger Joint/pathology , Finger Joint/physiology , Humans , Image Processing, Computer-Assisted , Scattering, Radiation , Synovial Fluid/chemistry
5.
Forensic Sci Med Pathol ; 7(4): 333-5, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21590457

ABSTRACT

Post-mortem hypostasis develops due to passive settling of the blood under the effect of gravity after death. Due to consumption of oxygen in the tissues by residual cellular activity after the circulation has stopped, lividity is composed of deoxygenated blood. It has been previously shown that cooling of a body causes lividity to oxygenate, changing from a dark red/blue to a pink/red color, due to hemoglobin's increased affinity for oxygen at low temperature. This study has confirmed that this occurs by passive diffusion through the skin, but that this can only occur within a limited time frame. The reasons for this process and its potential forensic application require further investigation.


Subject(s)
Cold Temperature , Oxygen/administration & dosage , Postmortem Changes , Skin/metabolism , Animals , Forensic Pathology , Hemoglobins/chemistry , Nitrogen/administration & dosage , Oxygen/blood , Oxyhemoglobins/chemistry , Rats , Rats, Sprague-Dawley , Spectrophotometry
6.
J Biomed Opt ; 16(2): 026011, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21361695

ABSTRACT

Vulnerable plaques constitute a risk for serious heart problems, and are difficult to identify using existing methods. Hyperspectral imaging combines spectral- and spatial information, providing new possibilities for precise optical characterization of atherosclerotic lesions. Hyperspectral data were collected from excised aorta samples (n = 11) using both white-light and ultraviolet illumination. Single lesions (n = 42) were chosen for further investigation, and classified according to histological findings. The corresponding hyperspectral images were characterized using statistical image analysis tools (minimum noise fraction, K-means clustering, principal component analysis) and evaluation of reflectance/fluorescence spectra. Image analysis combined with histology revealed the complexity and heterogeneity of aortic plaques. Plaque features such as lipids and calcifications could be identified from the hyperspectral images. Most of the advanced lesions had a central region surrounded by an outer rim or shoulder-region of the plaque, which is considered a weak spot in vulnerable lesions. These features could be identified in both the white-light and fluorescence data. Hyperspectral imaging was shown to be a promising tool for detection and characterization of advanced atherosclerotic plaques in vitro. Hyperspectral imaging provides more diagnostic information about the heterogeneity of the lesions than conventional single point spectroscopic measurements.


Subject(s)
Aortic Valve Stenosis/diagnosis , Atherosclerosis/diagnosis , Microscopy, Fluorescence/instrumentation , Spectrometry, Fluorescence/instrumentation , Aged , Aged, 80 and over , Equipment Design , Equipment Failure Analysis , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
7.
J Biomed Opt ; 16(2): 028001, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21361708

ABSTRACT

Orthotopic bladder cancer model in rats mimics human bladder cancer with respect to urothelial tumorigenesis and progression. Utilizing this model at pT1 (superficial stage), we analyze the tissue responses to hexyl 5-aminolevulinate-induced photodynamic therapy (HAL-PDT). In comparison to untreated rats, HAL-PDT causes little change in tumor-free rat bladder but induces inflammatory changes with increased lymphocytes and mononuclear cell infiltration in rat bladders with tumor. Immunohistochemistry reveals that HAL-PDT is without effect on proliferating cell nuclear antigen expression within the tumor and increases caspase-3 expression in both normal urothelium and the tumor. Transmission electron microscopy reveals severe mitochondrial damage, formations of apoptotic bodies, vacuoles, and lipofuscin bodies, but no microvillus-formed niches in HAL-PDT-treated bladder cancer rats. Bioinformatics analysis of the gene expression profile indicates an activation of T-cell receptor signaling pathway in bladder cancer rats without PDT. HAL-PDT increases the expression of CD3 and CD45RA in the tumor (determined by immunohistochemistry). We suggest that pathways of action of HAL-PDT may include, at least, activations of mitochondrial apoptosis and autophagy, breakdown of cancer stem cell niches, and importantly, enhancement of T-cell activation.


Subject(s)
Aminolevulinic Acid/administration & dosage , Photochemotherapy/methods , Signal Transduction/drug effects , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Animals , Cell Line, Tumor , Rats , Rats, Inbred F344 , Treatment Outcome
8.
J Biomed Opt ; 13(4): 044031, 2008.
Article in English | MEDLINE | ID: mdl-19021358

ABSTRACT

Monitoring of the tissue response to photodynamic therapy (PDT) can provide important information to help optimize treatment variables such as drug and light dose, and possibly predict treatment outcome. A urinary bladder cancer cell line (AY-27) was used to induce orthotopic transitional cell carcinomas (TCC) in female Fischer rats, and hexyl 5-aminolevulinate (HAL, 8 mM, 1 h)-induced PDT was performed on day 14 after instillation of the cancer cells (20 J/cm(2) fluence at 635 nm). In vivo optical reflectance and fluorescence spectra were recorded from bladders before and after laser treatment with a fiberoptic probe. Calculated fluorescence bleaching and oxygen saturation in the bladder wall were examined and correlated to histology results. Reflectance spectra were analyzed using a three-layer optical photon transport model. Animals with TCC treated with PDT showed a clear treatment response; decreased tissue oxygenation and protoporphyrin IX (PpIX) fluorescence photobleaching were observed. Histology demonstrated that 3 of 6 animals with treatment had no sign of the tumor 7 days after PDT treatment. The other 3 animals had significantly reduced the tumor size. The most treatment-responsive animals had the highest PpIX fluorescence prior to light irradiation. Thus, optical spectroscopy can provide useful information for PDT. The model has proved to be very suitable for bladder cancer studies.


Subject(s)
Aminolevulinic Acid/administration & dosage , Diagnosis, Computer-Assisted/methods , Photochemotherapy/methods , Spectrum Analysis/methods , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/drug therapy , Animals , Cell Line, Tumor , Female , Photosensitizing Agents/administration & dosage , Prognosis , Rats , Rats, Inbred F344 , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
9.
Lasers Surg Med ; 34(2): 182-8, 2004.
Article in English | MEDLINE | ID: mdl-15004832

ABSTRACT

BACKGROUND AND OBJECTIVES: The average success rate in achieving total blanching of port wine stain (PWS) lesions treated with laser-induced selective photothermolysis is below 25%, even after multiple treatments. This is because smaller diameter (5-20 microm) PWS blood vessels are difficult to destroy with selective photothermolysis since the volumetric heat generated by absorption of laser light is insufficient to adequately heat the entire vessel wall. The aim of this study was to investigate a potential technique for more efficient photocoagulation of small diameter PWS blood vessels in PWS that respond poorly to selective photothermolysis. STUDY DESIGN/MATERIALS AND METHODS: The blood volume fraction (BVF) in the upper dermis of the forearm of human volunteers was increased by placing an inflated blood pressure cuff on the upper arm. Applied pressures were in the range of 80-100 mm Hg for up to 5 minutes. The increased BVF was determined by matching reflectance spectra measured with that computed using a diffusion model. The impact of increased BVF on purpura formation induced by a 0.45 milliseconds pulsed dye laser (PDL) at 585 nm wavelength was investigated in normal and in PWS skin. RESULTS: In the presence of a 100 mm Hg pressure cuff, the BVF, as determined from the diffusion model, increased by a factor of 3 in the forearm and by 6 in the hand. Increasing BVF by a factor of 3 corresponds to an increase in blood vessel diameters by a factor of radical 3 approximately 1.7. BVF increased at 1-3 minutes after application of the pressure cuff, remained constant at 3-5 minutes, and returned to baseline values at 3 minutes after removal of the pressure cuff. Approximately 40% less radiant exposure was needed to induce the same amount of purpura after PDL irradiation when the blood pressure cuff was used. Applying an 80 mm Hg pressure cuff reduced the required radiant exposure for purpura formation by 30%. Heating of blood vessels was calculated as a function of vessel diameter and of radiant exposure (at 585 nm and at 0.5 and 1.5 milliseconds pulse duration). CONCLUSIONS: Enlarging the vessel lumen, for example, by obstructing venous return, can significantly reduce the "small-vessel-limitation" in PDL treatment of PWS. Dilation of PWS blood vessels enables a more efficient destruction of smaller vessels without increasing the probability of epidermal damage.


Subject(s)
Blood Volume , Laser Therapy , Port-Wine Stain/radiotherapy , Purpura/physiopathology , Skin/blood supply , Vasodilation , Adult , Aged , Humans , Port-Wine Stain/physiopathology , Purpura/etiology , Purpura/prevention & control , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...