Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 276(38): 36051-7, 2001 Sep 21.
Article in English | MEDLINE | ID: mdl-11454870

ABSTRACT

8,5'-Cyclopurine-2'-deoxynucleotides, which are strong blocks to mammalian DNA and RNA polymerases, represent a novel class of oxidative DNA lesion in that they are specifically repaired by nucleotide excision repair but not by base excision repair or direct enzymatic reversion. Previous studies using thin layer chromatography of (32)P-postlabeled DNA digests have detected several bulky oxidative lesions of unknown structure, called I-compounds, in DNA from normal mammalian organs. We investigated whether any of these type II I-compounds contained 8,5'-cyclo-2'-deoxyadenosine (cA). Two previously detected type II I-compounds were found to be dinucleotides of the sequence pAp-cAp and pCp-cAp. Furthermore, a modification of the technique resulted in detection of two additional I-compounds, pTp-cAp and pGp-cAp. Each I-compound isolated from neonatal rat liver DNA matched authentic (32)P-labeled cA-containing chromatographic standards under nine different chromatographic conditions. Their levels increased significantly after normal birth. The (32)P-postlabeling technique used here is capable of detecting 1-5 lesions/diploid mammalian cell. Thus, it should now be possible to detect changes of cA levels resulting from low level ionizing radiation and other conditions associated with oxidative stress, and to assess cA levels in tissues from patients with the genetic disease xeroderma pigmentosum who are unable to carry out nucleotide excision repair.


Subject(s)
DNA Damage , Deoxyadenosines/analysis , Oxidative Stress , Animals , Base Sequence , DNA Primers , DNA Repair , Phosphorus Radioisotopes
2.
Mutat Res ; 479(1-2): 71-9, 2001 Aug 08.
Article in English | MEDLINE | ID: mdl-11470482

ABSTRACT

Bulky endogenous oxidative lesions (type II I-compounds) reflect DNA damage associated with oxidative stress. As shown by 32P-postlabeling, their levels are enhanced by pro-oxidant genotoxins and also shortly after normal birth in several rat tissues as a function of time and the maternal diet. In order to elucidate which dietary components contribute to postnatal DNA damage, we have focused, herein, on the possible role of transition metals (iron, copper, and nickel). Pregnant Fischer 344 (F344) rats were fed AIN-93G purified diet containing different amounts of iron, copper, and nickel, or Purina-5001 natural-ingredient diet (which contains relatively high concentrations of these metals). Type II I-compounds were estimated by nuclease P1-enhanced 32P-postlabeling in liver and lung DNA of fetuses and at 24h and day 9 post-partum. Increased postnatal oxidative damage was detected in liver but not lung DNA of neonates exposed to higher amounts of dietary transition metals. There were significant positive linear correlations between maternal transition metal intake and neonatal, but not fetal and maternal type II I-compound levels. The results show that transition metals in the maternal diet affect perinatal oxidative DNA damage, presumably via a Fenton-type reaction. They also provide evidence for optimal levels in the maternal diet of transition metals, which on one hand, are essential for life, but on the other, can cause potentially deleterious DNA alterations in the offspring.


Subject(s)
DNA Damage , Metals/chemistry , Oxygen/metabolism , Animals , Animals, Newborn , Chromatography, Thin Layer , Copper/pharmacology , Female , Iron/pharmacology , Liver/drug effects , Liver/embryology , Lung/drug effects , Lung/embryology , Maternal Exposure , Maternal-Fetal Exchange , Mutation , Nickel/pharmacology , Oxidative Stress , Postpartum Period , Pregnancy , Rats , Rats, Inbred F344 , Time Factors
4.
Mutat Res ; 447(2): 137-47, 2000 Feb 14.
Article in English | MEDLINE | ID: mdl-10751597

ABSTRACT

Type II I-compounds (indigenous DNA adducts) denote a class of bulky oxidative DNA lesions that are detectable by 32P-postlabeling and represent useful biomarkers of DNA damage induced by oxidative stress. Their levels are increased in tissue DNA under pro-oxidant conditions, for example, as previously shown, in newborn rat organs. Here we have investigated whether the maternal diet affects perinatal type II I-compound levels. Pregnant F344 rats were fed Purina-5001 natural-ingredient or AIN-93G purified diet from day 11 of gestation. Type II I-compounds were measured in liver DNA at three different developmental stages, i.e., fetus, and 24 h and 9 days postnatally. Higher adduct levels were detected in the Purina-5001 group at each stage. In a second experiment, pregnant F344 rats were subjected to dietary restriction (DR) (by 40%; Purina-5001) from day 12 of gestation. At 24 h postpartum hepatic type II I-compound levels were decreased compared to parallel ad libitum (AL) fed controls. As an unrelated observation, fetal lung, but not liver, kidney, and skin DNA contained a different pattern of nonpolar, apparently nonoxidative adducts, which were not diet-dependent. These spots were not detectable 24 h after birth and were observed at much reduced levels and only in a few samples at 9 days. The main results show for the first time that the maternal nutrition modulated levels of oxidative lesions in fetal and neonatal DNA, but the underlying mechanisms (e.g., differences in metal or caloric content of the diets) still need to be determined. The dietary effects were apparently transmitted through both placenta and the mother's milk.


Subject(s)
DNA Adducts/metabolism , Diet , Oxidative Stress/physiology , Aging/physiology , Animals , Animals, Newborn , Body Weight , DNA/genetics , DNA/metabolism , Eating , Female , Food, Formulated , Litter Size , Liver/metabolism , Lung/embryology , Lung/metabolism , Male , Pregnancy , Rats , Rats, Inbred F344 , Time Factors
5.
Environ Mol Mutagen ; 33(4): 303-12, 1999.
Article in English | MEDLINE | ID: mdl-10398378

ABSTRACT

Although human exposure generally occurs to mixtures of chemicals, limited toxicological information is available to characterize the potential interactions of the components of environmental mixtures. This study was conducted to compare the genotoxicity of chemically characterized polycyclic aromatic hydrocarbon (PAH) mixtures using in vitro and in vivo techniques. A total of three extracts (E1-E3) were selected from sediment samples collected from a lake adjacent to an abandoned coal gasification site. Sediments were collected on a grid moving downstream and away from the most likely source of PAH contamination, with E1 collected closest to the shore, E2 at an intermediate distance, and E3 furthest from the shore. The sediment samples were extracted in methylene chloride and methanol, dried, and redissolved in an appropriate solvent for evaluation in a battery of genotoxicity assays. Samples were evaluated for their ability to produce point mutations in bacteria and DNA adducts in vitro without metabolic activation or in vivo. Samples were also analyzed using GC/MS. Sample E1 had both the highest concentration of benzo(a)pyrene (BP) (46.5 ppm) and carcinogenic PAHs and, using 32P-postlabeling, induced the highest adduct levels overall in vitro and in vivo. Sample E2, which had a BP concentration of 14 ppm, induced the greatest number of revertants in the bacterial mutagenicity assay. Sample E3, which had the lowest level of carcinogenic PAHs and BP, induced the lowest adduct levels. However, E3 was capable of inducing a positive genotoxic response in bacteria (with S9), although the slope of the response at lower doses was less than that of E2. The in vivo data showed that the major adduct formed by E1 and E2 was a BP adduct. This information could not have been obtained with the Salmonella or in vitro postlabeling tests. Among internal organs, the extracts of all three samples induced the greatest adduct levels in the lung, similarly to previous complex PAH mixtures studied. These data demonstrate the limitations of predicting genotoxic or carcinogenic potential based on chemical analysis or a single biological test. The results suggest that mixture interactions, cytotoxicity and metabolism are likely to have an influence on the potential of a complex mixture of chemicals to produce a carcinogenic effect. In addition, the concentration of genotoxic PAHs and both in vitro and in vivo DNA adduct formations were decreased with increasing distance from the shoreline.


Subject(s)
Mutagens/toxicity , Polycyclic Compounds/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biotransformation , DNA Adducts/biosynthesis , DNA Adducts/metabolism , DNA Adducts/pharmacokinetics , Female , Mice , Mice, Inbred ICR , Mutagenicity Tests , Mutagens/pharmacokinetics , Polycyclic Compounds/pharmacokinetics , Rats , Rats, Sprague-Dawley , Salmonella/genetics , Tissue Distribution , Water Pollutants, Chemical/pharmacokinetics
6.
Mutat Res ; 424(1-2): 71-81, 1999 Mar 08.
Article in English | MEDLINE | ID: mdl-10064851

ABSTRACT

The detection of 1,N2-propanodeoxyguanosine adducts in the DNA of rodent and human tissues as endogenous lesions has raised important questions regarding the source of their formation and their roles in carcinogenesis. Both in vitro and in vivo studies have generated substantial evidence which supports the involvement of short- and long-chain enals derived from oxidized polyunsaturated fatty acids (PUFAs) in their formation. These studies show that: (1) the cyclic propano adducts are common products from reactions of enals with DNA bases; (2) they are formed specifically from linoleic acid (LA; omega-6) and docosahexaenoic acid (omega-3) under in vitro stimulated lipid peroxidation conditions; (3) the levels of propano adducts are dramatically increased in rat liver DNA upon depletion of glutathione; (4) the adduct levels are increased in the liver DNA of the CCl4-treated rats and the mutant strain of Long Evans rats which are genetically predisposed to increased lipid peroxidation; and (5) adduct levels are significantly higher in older rats than in newborn rats. These studies collectively demonstrate that tissue lipid peroxidation is a main endogenous pathway leading to propano adduction in DNA. The possible contribution from environmental sources, however, cannot be completely excluded. The mutagenicity of enals and the mutations observed in site-specific mutagenesis studies using a model 1,N2-propanodeoxyguanosine adduct suggest that these adducts are potential promutagenic lesions. The increased levels of the propano adducts in the tissue of carcinogen-treated animals also provide suggestive evidence for their roles in carcinogenesis. The involvement of these adducts in tumor promotion is speculated on the basis that oxidative condition in tissues is believed to be associated with this process.


Subject(s)
DNA Adducts , DNA Damage , Deoxyguanosine/analogs & derivatives , Animals , Humans , Lipid Peroxidation , Liver/metabolism , Mice , Rats , Rats, Inbred F344 , Rats, Long-Evans
7.
Mutat Res ; 424(1-2): 183-94, 1999 Mar 08.
Article in English | MEDLINE | ID: mdl-10064860

ABSTRACT

I-compounds are bulky covalent DNA modifications which increase with age in tissues of unexposed laboratory animals and are derived from endogenous DNA-reactive intermediates of nutrient and oxygen metabolism. They have been classified into 2 major groups, i.e., type I and type II. Profiles and levels of type I I-compounds show considerable variation depending on species, strain, tissue, and gender, but are also affected by diet and chemical and hormonal exposures, indicating their formation to be determined by genetic and environmental factors. For example, sex hormones, dietary oat lipids, and isoprenoids affect their profiles and/or levels in tissue DNA. A gradual depletion of many type I I-compounds occurs during carcinogenesis, as many carcinogens/tumor promoters significantly reduce their levels, and neoplasms display very low levels, apparently independent of growth rate, indicating a loss of the ability to form these modified nucleotides. Conversely, dietary restriction, the most effective method to retard carcinogenesis and aging, significantly elevates type I I-compound levels, as compared to age-matched ad libitum-fed animals. Levels of many liver and kidney I-compounds exhibit genotype- and diet-dependent positive linear correlations with median life span. Formation of high levels of oat-related type I I-compounds has been associated with reduced formation of carcinogen-induced preneoplastic hepatic foci. These results suggest that such DNA modifications may not represent DNA lesions but may rather be functionally important. This view is supported by circadian rhythms displayed by some I-compounds. Thus, certain type I I-compounds may play a protective role against carcinogenesis and age-associated degenerative processes. Type II I-compounds, on the other hand, represent DNA damage and include several bulky lesions, which are enhanced by pro-oxidant carcinogens such as ferric nitrilotri- acetate (Fe-NTA) in target organ (kidney) DNA of rodents and are identical to products generated by oxidizing DNA or oligonucleotides under Fenton reaction conditions in vitro. Some of these products appear to be base-base or base-sugar intrastrand crosslinks. Notably, Fe-NTA reduces the levels of type I I-compounds in renal DNA. Type II I-compound levels are increased in tissue DNA of normal newborn rats. The formation of oxidative DNA lesions in neonates is most likely caused by oxidative stress associated with the sudden increase of partial oxygen pressure in arterial blood and tissues at birth. In view of the rapid cell replication at this developmental stage, endogenous oxidative DNA lesions sustained early in life may contribute to the development of cancer and degenerative diseases later in life.


Subject(s)
DNA Adducts , DNA Damage , DNA/chemistry , Oxidative Stress , Animals , Chick Embryo , DNA/drug effects , DNA Adducts/drug effects , DNA Damage/drug effects , Diet , Lipid Peroxidation , Rats , Reactive Oxygen Species
8.
Nutr Cancer ; 35(1): 87-95, 1999.
Article in English | MEDLINE | ID: mdl-10624711

ABSTRACT

Type I I-compounds are bulky endogenous DNA modifications detectable by 32P postlabeling that exhibit age, species, tissue, genotype, gender, and diet dependence. Their formation appears unrelated to oxidative stress. In fact, several lines of indirect evidence suggest that many type I I-compounds may represent normal functional DNA modifications. For example, long-term dietary restriction (DR), which retards the development of age-related diseases including cancer and extends median and maximum life spans, unexpectedly elicits significant increases rather than decreases in the levels of many I-compounds in different rodent tissues. Positive linear correlations have been observed between such levels and median life spans of the animals. In the present work we have investigated 1) whether elevation of I-compound levels does not depend on chronic DR, i.e., occurs after a short period of DR or fasting, and 2) whether I-compound levels return to control values after the animals are returned to unrestricted feeding after food deprivation. Female Fischer 344 rats (approx 140 g each) were randomized into three groups. Group I was fed a natural ingredient (Purina 5001) diet ad libitum (AL) throughout the study, Group 2 was switched to 60% of the AL amount (40% DR) at 0 hour, and Group 3 was given no food for up to 72 hours and then returned to AL feeding until the end of the experiment. Liver DNA of individual rats (n = 4) was isolated for I-compound analysis at 24, 72, and 240 hours. Restricted and food-deprived rats showed elevated levels of hepatic I-compounds, with fasting eliciting the highest levels. These effects were seen as early as the 24-hour time point. Refeeding after 72 hours of food deprivation restored the levels to control values, measured at 240 hours. Our observations are discussed in relation to carcinogenesis and tumor promotion. The almost instantaneous changes of endogenous DNA modifications showed their exquisite sensitivity to nutritional factors and provided strong new evidence for precise regulation of their formation and removal.


Subject(s)
DNA Adducts/metabolism , Food Deprivation/physiology , Liver/metabolism , Animals , Chromatography, Thin Layer , DNA Adducts/isolation & purification , DNA Damage , Female , Phosphorus Radioisotopes , Random Allocation , Rats , Rats, Inbred F344
9.
Mutat Res ; 422(2): 297-311, 1998 Dec 03.
Article in English | MEDLINE | ID: mdl-9838171

ABSTRACT

I (indigenous)-compounds are bulky endogenous DNA adducts which are detected by 32P-postlabeling in unexposed animals. I-compound levels in rodents depend on age, species, strain, gender, tissue, diet, and chemical exposure. There are two classes of I-compounds, type I and type II. While many type I I-compounds may not reflect DNA damage, type II I-compounds have been identified as oxidative DNA lesions some of which can be produced in vitro under Fenton reaction conditions. In rats, caloric restriction (CR) increases the levels of many type I I-compounds compared with ad libitum fed animals, while high fat diet has the opposite effect. Here, we have tested whether hepatic DNA of a non-rodent mammal, the pig, contains I-compounds and whether feeding a high cholesterol/high fat (HC/HF) diet modulates their levels, assuming this would affect the formation of lipid-related precursors and cause oxidative stress. Male Yorkshire pigs aged 2 months old, were fed either control or HC/HF diet (control diet supplemented with 2% cholesterol and 19% lard) for 2 months. Pig liver DNA contained at least 19 type I and five type II I-compounds. Among the former, only five matched corresponding spots in rat liver DNA, while all the latter DNA lesions were detected in both species. The levels of both types of DNA modifications were six to eight-fold higher in pig DNA. HC/HF diet reduced levels of many type I I-compounds up to several fold but had little effect on the oxidative lesions. Several type I I-compounds showed negative linear correlations with serum cholesterol levels, while this association was positive for total type II I-compounds. The substantially elevated steady-state levels of bulky endogenous DNA adducts in the species with the longer life expectancy were surprising. Thus, for the first time, an intimate link between nutritional status and endogenous DNA modifications has been established in a non-rodent system. We propose that in order to explain our observations, differences in diet composition, antioxidant defenses, and DNA repair, as well as cytochrome P450 modulation of precursor levels and hormonal effects need to be considered.


Subject(s)
Cholesterol, Dietary/pharmacology , DNA Adducts/analysis , Dietary Fats/pharmacology , Liver/metabolism , Animals , Cholesterol/blood , DNA Adducts/chemistry , DNA Adducts/metabolism , DNA Damage , Liver/drug effects , Male , Oxidation-Reduction , Rats , Rats, Inbred F344 , Species Specificity , Swine
10.
Carcinogenesis ; 19(10): 1863-6, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9806170

ABSTRACT

I-compounds are endogenous bulky DNA modifications which are detected by nuclease P1-enhanced 32P-post-labeling in tissue DNA of animals not knowingly exposed to carcinogens. Their profiles and levels depend inter alia on animal age, species, strain, tissue, gender, diet and exposure to chemicals such as cytochrome P450 inducers and carcinogens. Due to lack of sufficient material obtainable from in vivo sources, chemical structures of I-compounds and their parent normal bases have not yet been identified. In this report we provide 32P-post-labeling and chromatographic evidence that two prominent I-compounds, herein called C1 and C2, which occur at relatively high levels in pig liver DNA are guanine derivatives. This result was obtained by showing that both compounds, isolated from 32P-post-labeling thin-layer maps, were chemically unstable, i.e. they could be readily hydrolyzed to 32P-post-labeled deoxyguanosine 3',5'-bisphosphate by heating in water. C1 appeared particularly labile, undergoing hydrolysis during thin-layer chromatography at pH 3.3 without heating. Several other I-compounds and adducts, as well as the four normal DNA nucleotides, were, however, highly resistant to hydrolysis under the conditions used here. The possible significance of these findings will be briefly discussed.


Subject(s)
DNA Adducts/metabolism , Guanine Nucleotides/metabolism , Liver/metabolism , Animals , Chromatography, Thin Layer , Hydrolysis , Kidney/metabolism , Male , Phosphorus Radioisotopes , Swine
11.
Chem Biol Interact ; 110(1-2): 85-102, 1998 Mar 12.
Article in English | MEDLINE | ID: mdl-9566727

ABSTRACT

32P-postlabelling analysis for detecting DNA adducts formed by polycyclic aromatic compounds is one of the most widely used techniques for assessing genotoxicity associated with these compounds. In cases where the formation of adducts is extremely low, a crucial step in the analysis is an enrichment procedure for adducts prior to the radiolabelling step. The nuclease P1 enhancement procedure is the most established and frequently used of these methods. An immunoaffinity procedure developed for class specific recognition for polycyclic aromatic hydrocarbon (PAH)-DNA adducts has therefore been compared with the nuclease P1 method for a range of DNA adducts formed by PAHs. The evaluation was carried out with skin DNA from mice treated topically with benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, 5-methylchrysene or chrysene. The immobilised antibody had the highest affinity for adducts structurally similar to the BPDE-I-deoxyguanosine adduct ([+/-]-N2-(7r,8t,9r-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene-1 0t-yl)-2'-deoxyguanosine) against which the antibody had been raised. Of the PAH-modified DNAs evaluated, the maximum adduct recovery was obtained for DNA containing the BPDE I-deoxyguanosine adduct. With DMBA-modified DNA, the profiles of adducts recovered from the column were similar when the column material was treated either with a digest of DMBA-modified DNA or with 32P-labelled DMBA adducts. I-compounds (endogenous adducts in tissue DNA of unexposed animals), which had similar chromatographic properties to PAH-DNA adducts, were not enriched by the immunoaffinity procedure. Compared to the simple nuclease P1 enhancement procedure, the immunoaffinity methods were lengthier and more labour intensive. Advantages of the immunoaffinity procedure include: specificity, allowing the selective detection of a certain class of adducts: efficient adduct enrichment, providing a viable alternative to other enrichment procedures; adequate sensitivity for model studies and the potential to purify adducts for further characterisation. However, as a general screen for detecting the formation of DNA adducts, the nuclease P1 procedure was viewed as the initial method of choice since it was capable of detecting a wider range of PAH-DNA adducts.


Subject(s)
Carcinogens/toxicity , Chromatography, Affinity/methods , DNA Adducts/analysis , Mutagens/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Single-Strand Specific DNA and RNA Endonucleases/chemistry , 9,10-Dimethyl-1,2-benzanthracene/analogs & derivatives , 9,10-Dimethyl-1,2-benzanthracene/analysis , Animals , Antibodies, Monoclonal , Benzo(a)pyrene/toxicity , Chrysenes/toxicity , DNA Adducts/chemistry , Fluorescent Antibody Technique , Isotope Labeling , Mice , Mutagenicity Tests , Phosphorus Radioisotopes , Polycyclic Aromatic Hydrocarbons/chemistry , Skin/drug effects
12.
Biochem Pharmacol ; 55(6): 831-9, 1998 Mar 15.
Article in English | MEDLINE | ID: mdl-9586956

ABSTRACT

Polynuclear aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants, and recently bioassay-based induction studies have been used to determine exposures to complex mixtures of PAHs. Induction of CYP1A1-dependent activity in H4IIE rat hepatoma cells has been used extensively as a bioassay for halogenated aromatic hydrocarbons and more recently for PAHs. Fluoranthene (FL) is a prevalent PAH contaminant in diverse environmental samples, and FL did not induce CYP1A1-dependent ethoxyresorufin O-deethylase (EROD) activity significantly in H4IIE cells. However, in cells cotreated with 2 x 10(-5) M FL plus the potent inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or benzo[k]fluoranthene (BkF) (2 x 10(-8) M), there was a significant decrease in EROD activities. Furthermore, treatment of TCDD-induced rat microsomes with FL caused an 80% decrease in EROD activity. Studies showed that FL did not affect induction of CYP1A1 protein or mRNA levels in H4IIE cells, and analysis of enzyme inhibition data using microsomal CYP1A1 indicated that FL noncompetitively inhibited CYP1A1-dependent activity. 32P-Postlabeling revealed no significant FL-DNA adduct formation in H4IIE cells treated with FL. However, in cells cotreated with FL plus BkF or benzo[a]pyrene (BaP), certain PAH-DNA adducts were induced 2-fold. This study demonstrated that FL is an inhibitor of CYP1A1-dependent enzyme activity in rat hepatoma H4IIE cells and that the genotoxic potency of some carcinogenic PAHs may be modulated by FL in mixtures containing relatively high levels of this compound.


Subject(s)
Cytochrome P-450 CYP1A1/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Fluorenes/pharmacology , Animals , Biological Assay , Cytochrome P-450 CYP1A1/biosynthesis , DNA Adducts/isolation & purification , DNA, Neoplasm/isolation & purification , Enzyme Induction , Female , Linear Models , Microsomes, Liver/enzymology , Rats , Rats, Sprague-Dawley , Tumor Cells, Cultured
13.
Carcinogenesis ; 18(7): 1419-21, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9230290

ABSTRACT

The purpose of this study was to determine whether the level of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine) (8-oxo-dG), a major mutagenic DNA oxidation product, is enhanced in newborn rat liver DNA as a consequence of oxidative stress incurred during the early postnatal period. 32P-postlabeling showed this adduct to increase approximately 2-fold from the 20th day of gestation (2 days before birth) to a peak level at 50-53 h after birth. Postnatal levels exceeded fetal levels at all time points investigated, i.e. 0.5-1, 8, 24, 50-53, 100, 216 and 432 h after birth. Increased formation of this mutagenic DNA lesion during the critical postnatal phase when there is rapid cell proliferation in all tissues is proposed to contribute to carcinogenesis in susceptible tissues later in life.


Subject(s)
DNA Damage , Deoxyguanosine/analogs & derivatives , Liver/metabolism , 8-Hydroxy-2'-Deoxyguanosine , Animals , Animals, Newborn , Deoxyguanosine/metabolism , Oxidation-Reduction , Rats , Rats, Inbred F344
14.
Carcinogenesis ; 18(4): 859-66, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9111226

ABSTRACT

Mammalian DNA contains bulky endogenous DNA modifications (I-compounds), which increase with age in unexposed animals, as shown by 32P-postlabeling. We have examined the perinatal formation of a subclass (type II) of I-compounds in rat liver, kidney, skin and lung. These I-compounds represent bulky oxidative DNA lesions, defined herein as intrastrand base-base and base-sugar cross-links, adducts of lipid peroxidation products and DNA-protein cross-links. We observed a rapid increase in the levels of five bulky oxidative DNA lesions during the first hours after normal birth of rats, with total levels increasing 4.2-, 3.0- and 1.3-fold, respectively, in liver, kidney and skin. This effect was not noted in lung. The results were consistent with oxidative stress induced by the known sudden increase in partial oxygen pressure at birth in blood and tissues, implying inadequate antioxidant defenses in the affected neonatal organs. Hepatic oxidative damage appeared intensified by increased concentrations of pro-oxidants and reduced concentrations of antioxidants in the maternal diet. The postnatal DNA lesions are postulated to be premutagenic, as indicated by their bulky nature and persistence. Pathophysiological effects of oxidative DNA damage would be exacerbated by rapid cell proliferation in neonatal tissues and consequent fixation as mutations. In addition to inherited mutations, DNA lesions acquired as a consequence of normal birth may play a hitherto unrecognized role in spontaneous carcinogenesis and age-related degenerative diseases.


Subject(s)
Animals, Newborn/metabolism , DNA Damage , Organ Specificity , Oxidative Stress , Animals , DNA Adducts , Diet , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley
15.
Biochem Pharmacol ; 53(5): 663-9, 1997 Mar 07.
Article in English | MEDLINE | ID: mdl-9113085

ABSTRACT

We recently reported that administration of the antiestrogen tamoxifen (TAM) gives rise to two groups of DNA adducts in female mouse liver in vivo, as measured by 32P-postlabeling, and provided evidence that 4-hydroxytamoxifen and alpha-hydroxytamoxifen are proximate carcinogenic metabolites leading to group I and group II adducts, respectively (Randerath et al., Carcinogenesis 15: 2087-2094, 1994). Because cytochrome P450 (CYP) enzymes play an important role in TAM metabolism, in this investigation we tested the hypothesis that induction of liver CYP enzymes may affect TAM metabolism profoundly, resulting in increased or decreased TAM-DNA adduct formation in vivo. To this end, we treated female ICR mice with TAM either alone or in combination with one of several classic CYP inducers, i.e. phenobarbital (PB), beta-naphthoflavone (BNF), and pregnenolone-16 alpha-carbonitrile (PCN), and determined the levels of 32P-postlabeled TAM-DNA adducts and the activities of several CYP-dependent enzymes. Each of the inducers greatly diminished levels of group II, but did not affect group I adducts. TAM elicited induction of benzphetamine N-demethylase activity in liver, while activities of other enzymes were not affected. TAM, when given in combination with BNF, elicited a synergistic induction of ethoxyresorufin O-deethylase (EROD) (CYP1A1) and methoxyresorufin O-demethylase (MROD) (CYP1A2) activities. Likewise, PCN given along with TAM caused synergistic induction of EROD and ethylmorphine N-demethylase activities. There was no synergism between PB and TAM, however. Overall, the results further support the existence of two pathways of TAM metabolism to DNA-reactive electrophiles and strongly suggest that the classic CYP inducers tested enhance detoxication of TAM to non-genotoxic metabolites.


Subject(s)
Cytochrome P-450 Enzyme System/physiology , Estrogen Antagonists/toxicity , Tamoxifen/toxicity , Animals , DNA Adducts/analysis , Enzyme Induction , Female , Mice , Mice, Inbred ICR , Phenobarbital/pharmacology , Pregnenolone Carbonitrile/pharmacology , Tamoxifen/metabolism
16.
Environ Mol Mutagen ; 29(4): 372-8, 1997.
Article in English | MEDLINE | ID: mdl-9212788

ABSTRACT

Wood preserving waste (WPW) sites contain numerous toxic compounds, including phenols, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins, and dibenzofurans. Previous in vitro and in vivo 32P-postlabeling studies showed the induction of multiple carcinogen-DNA adducts by WPW extracts. We now have tested the hypothesis in a mouse skin bioassay that a WPW extract not only causes the formation of exogenous, xenobiotic-derived DNA adducts, but also alters the levels of endogenous DNA modifications. Skin DNA of female ICR mice treated topically with an organic WPW extract was found by 32P-postlabeling to contain significantly increased levels of bulky oxidative DNA lesions (type II I-compounds), in addition to exogenous PAH-derived adducts. The mechanism of this increase is postulated to proceed through electrophilic quinoid compounds, which presumably were formed from phenols by chemical reactions of waste material or biologically by oxidative metabolism. On the other hand, the levels of another class of endogenous DNA adducts (type I I-compounds) were reduced significantly in exposed skin DNA. This effect was explained by the presence of cytochrome P450 inducers in the extract. All three types of DNA alterations observed may play a significant role in carcinogenesis. Our results imply that in addition to exogenous carcinogen-DNA adducts, alterations of endogenous DNA modifications may need to be considered in evaluating carcinogenic risk from toxic chemical wastes and the effects of remediation measures.


Subject(s)
DNA Adducts/analysis , Isotope Labeling/methods , Skin/drug effects , Waste Products/adverse effects , Wood , Acetone/toxicity , Animals , DNA Adducts/metabolism , Female , Free Radicals , Mice , Mice, Inbred ICR , Pentachlorophenol/chemistry , Pentachlorophenol/metabolism , Pentachlorophenol/toxicity , Phosphorus Radioisotopes , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Single-Strand Specific DNA and RNA Endonucleases/metabolism , Waste Products/analysis
17.
Mutat Res ; 366(3): 197-238, 1996 Dec.
Article in English | MEDLINE | ID: mdl-9033668

ABSTRACT

Chronic degenerative diseases are the leading causes of death in developed countries. Their control is exceedingly difficult due to their multiplicity and diversity, the interconnection with a network of multiple risk factors and protective factors, the long latency and multistep pathogenesis, and the multifocal localization. Adducts to nuclear DNA are biomarkers evaluating the biologically effective dose, reflecting an enhanced risk of developing a mutation-related disease more realistically than the external exposure dose. The localization and accumulation of these promutagenic lesions in different organs are the composite result of several factors, including (a) toxicokinetics (first-pass effect); (b) local and distant metabolism; (c) efficiency and fidelity of DNA repair; and (d) cell proliferation rate. The last factor will affect not only the dilution of DNA adducts but also the possible evolution towards either destructive processes, such as emphysema or cardiomyopathies, or proliferative processes, such as benign or malignant tumors at various sites. They also include heart tumors affecting fetal myocytes after transplacental exposure to DNA-binding agents, blood vessel tumors, and atherosclerotic plaques. In this article, particular emphasis is given to molecular alterations in the heart, which is the preferential target for the formation of DNA adducts in smokers, and in human aorta, where an extensive molecular epidemiology project is documenting the systematic presence of adducts to the nuclear DNA of smooth muscle cells from atherosclerotic lesions, and their significant correlation with known atherogenic risk factors. Exocyclic DNA adducts resulting from lipid peroxidation, and age-related indigenous adducts (I-compounds) may also originate from endogenous sources, chronic infections and infestations, and inflammatory processes. Type II I-compounds are bulky DNA lesions resulting from oxidative stress, whereas type II-compounds are presumably normal DNA modifications, which display positive correlations with median life span and are decreased in cancer and other pathological conditions. Profiles of type II-compounds strongly depend on diet and are related to the antidegenerative effects of caloric/ dietary restriction. Even broader is the possible meaning of adducts to mitochondrial DNA, which have been detected in rodents exposed to genotoxic agents and complex mixtures, as well as in untreated rodents, in larger amounts when compared to the nuclear DNA of the same cells. Mutations in mitochondrial DNA increase the number of oxidative phosphorylation-defective cells, especially in energy-requiring postmitotic tissues such as brain, heart and skeletal muscle, thereby playing an important role in aging and a variety of chronic degenerative diseases. A decreased formation of DNA adducts is an indicator of reduced risk of developing the associated disease. Therefore, these molecular dosimeters can be used as biomarkers in the prevention of chronic degenerative diseases, pursued either by avoiding exposure to adduct-forming agents or by using chemopreventive agents. Interventions addressed to the human organism by means of dietary measures or pharmacological agents have encountered a broad consensus in the area of cardiovascular diseases, and are deserving a growing interest also in cancer prevention. The efficacy of chemopreventive agents can be assessed by evaluating inhibition of nuclear DNA or mitochondrial DNA adduct formation in vitro, in animal models, and in phase II clinical trials in high-risk individuals.


Subject(s)
Chronic Disease , DNA Adducts , Mutagens , Animals , Arteriosclerosis/epidemiology , Arteriosclerosis/etiology , Arteriosclerosis/prevention & control , DNA Adducts/toxicity , DNA Damage , Female , Heart Diseases/epidemiology , Heart Diseases/etiology , Heart Diseases/prevention & control , Humans , Liver/pathology , Lung/pathology , Male , Neoplasms/epidemiology , Neoplasms/etiology , Neoplasms/prevention & control , Smoking
18.
Carcinogenesis ; 17(12): 2563-70, 1996 Dec.
Article in English | MEDLINE | ID: mdl-9006090

ABSTRACT

Mammalian DNA contains bulky endogenous DNA modifications (I-compounds), which increase with age in unexposed animals, as shown by 32P-postlabeling. We have examined the perinatal formation of a subclass (type II) of I-compounds in rat liver, kidney, skin and lung. These I-compounds represent bulky oxidative DNA lesions, defined herein as intrastrand base-base and base-sugar cross-links, adducts of lipid peroxidation products and DNA-protein cross-links. We observed a rapid increase in the levels of five bulky oxidative DNA lesions during the first hours after normal birth of rats, with total levels increasing 4.2-, 3.0- and 1.3-fold, respectively, in liver, kidney and skin. This effect was not noted in lung. The results were consistent with oxidative stress induced by the known sudden increase in partial oxygen pressure at birth in blood and tissues, implying inadequate antioxidant defenses in the affected neonatal organs. Hepatic oxidative damage appeared intensified by increased concentrations of pro-oxidants and reduced concentrations of antioxidants in the maternal diet. The postnatal DNA lesions are postulated to be premutagenic, as indicated by their bulky nature and persistence. Pathophysiological effects of oxidative DNA damage would be exacerbated by rapid cell proliferation in neonatal tissues and consequent fixation as mutations. In addition to inherited mutations, DNA lesions acquired as a consequence of normal birth may play a hitherto unrecognized role in spontaneous carcinogenesis and age-related degenerative diseases.


Subject(s)
Animals, Newborn/metabolism , DNA Damage , Animals , DNA Adducts/analysis , Female , Organ Specificity , Oxidation-Reduction , Pregnancy , Rats , Rats, Inbred F344
19.
Mutat Res ; 371(1-2): 87-104, 1996 Nov 04.
Article in English | MEDLINE | ID: mdl-8950354

ABSTRACT

Among the main DNA-reactive metabolites of 1,3-butadiene (BD), both 1,2:3,4-butadiene diepoxide (BDE) and 1,2-epoxy-3-butene (BME) have been reported in mice and rats exposed to BD, but blood and tissue levels of these metabolites are much higher in mice than in rats under similar exposure conditions. BDE, being more reactive and genotoxic than BME, is thought to be responsible for the greater susceptibility of mice to BD carcinogenicity. While BDE is a DNA-alkylating agent and some BDE adducts have been characterized, no sufficiently sensitive method has been reported for studying BDE-DNA binding in vivo. In the present investigation, a modified dinucleotide/monophosphate version of the 32P-postlabeling assay was applied to detect BDE-DNA adducts, which were prepared by reacting BDE with calf thymus DNA or deoxyribooligonucleotides [(AC)10, (AG)10, (CCT)7 and (GGT)7] in vitro or with skin DNA of mice in vivo upon topical treatment. Optimal resolution by 2-D PEI-cellulose TLC of the highly polar 5'-monophosphate adducts was achieved at +4 degrees C using 0.3 M LiCI (DI) and 0.4 M NaCl, 0.04 M H3BO3, pH 7.6 (D2). The profiles of the 32P-postlabeled adducts were similar for calf thymus and skin DNA, with 3 major spots being detected. Adducts obtained in in vitro and in vivo experiments were compared by re- and cochromatography in 4 or 5 different solvents, and these experiments provided evidence that corresponding BDE adducts, for the most part, were identical and represented adenine derivatives. Guanine adducts were not detected by this method although literature data indicate their formation. Quantitatively, the assay responded linearly to adduct concentration, as shown in an experiment where BDE-modified skin DNA was serially diluted up to 81-fold with control DNA. The limit of detection was approximately 1 adduct in 10(8) normal nucleotides. Further, in an in vivo dosimetry study, skin DNA from groups of 8 individual mice treated with different doses of BDE (1.9, 5.7, 17, 51 and 153 mumol/mouse) for 3 days exhibited a linear relationship (r > or = 0.992) between adduct levels and dose. The results suggest that the 32P-postlabeling assay described herein will have utility in mechanistic studies and biomonitoring of DNA adduct formation from BDE and possibly other polar epoxides.


Subject(s)
Butadienes/metabolism , DNA Adducts , Epoxy Compounds/analysis , Animals , Autoradiography , Cattle , Chromatography, Thin Layer , Dose-Response Relationship, Drug , Epoxy Compounds/toxicity , Female , Mice , Mice, Inbred ICR , Phosphorus Radioisotopes , Rats
20.
Toxicology ; 113(1-3): 341-4, 1996 Oct 28.
Article in English | MEDLINE | ID: mdl-8901922

ABSTRACT

Epoxides of 1,3-butadiene, i.e. 1,2-epoxy-3-butene and 1,2:3,4-diepoxybutane are DNA-reactive metabolites. No methods have been reported for detecting DNA adducts of these compounds in exposed animals or humans. The purpose of this study has been to develop a 32P-postlabeling assay for adducts of 1,3-butadiene and its dimer, 4-vinyl-1-cyclohexene. The assay was applied to skin DNA of mice exposed topically to diepoxides of these dienes. A dose-dependent increase in in vivo adduct formation was observed for both compounds. The newly developed assay will find applications in mechanistic studies on these and related compounds and in human biomonitoring.


Subject(s)
Carcinogens/metabolism , Cyclohexanes/metabolism , DNA Adducts/analysis , Epoxy Compounds/metabolism , Vinyl Compounds/metabolism , Animals , Cyclohexenes , Female , Mice , Mice, Inbred ICR , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...