Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(49): 46079-87, 2001 Dec 07.
Article in English | MEDLINE | ID: mdl-11598141

ABSTRACT

Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin.


Subject(s)
Glucose/metabolism , Monosaccharide Transport Proteins/metabolism , Muscle Proteins , Phosphoinositide-3 Kinase Inhibitors , Signal Transduction , Androstadienes/pharmacology , Animals , Biological Transport , Cell Line , Chromones/pharmacology , Enzyme Inhibitors/pharmacology , Glucose Transporter Type 4 , Mitogen-Activated Protein Kinases/metabolism , Morpholines/pharmacology , Wortmannin , p38 Mitogen-Activated Protein Kinases
2.
J Biol Chem ; 276(47): 44212-21, 2001 Nov 23.
Article in English | MEDLINE | ID: mdl-11560920

ABSTRACT

Insulin enhances plasmalemmal-directed traffic of glucose transporter-4 (GLUT4), but it is unknown whether insulin regulates GLUT4 traffic through endosomal compartments. In L6 myoblasts expressing Myc-tagged GLUT4, insulin markedly stimulated the rate of GLUT4myc recycling. In myoblasts stimulated with insulin to maximize surface GLUT4myc levels, we followed the rates of surface-labeled GLUT4myc endocytosis and chased its intracellular distribution in space and time using confocal immunofluorescence microscopy. Surface-labeled GLUT4myc internalized rapidly (t(12) 3 min), reaching the early endosome by 2 min and the transferrin receptor-rich, perinuclear recycling endosome by 20 min. Upon re-addition of insulin, the t(12) of GLUT4 disappearance from the plasma membrane was unchanged (3 min), but strikingly, GLUT4myc reached the recycling endosome by 10 and left by 20 min. This effect of insulin was blocked by the phosphatidylinositol 3-kinase inhibitor LY294002 or by transiently transfected dominant-negative phosphatidylinositol 3-kinase and protein kinase B mutants. In contrast, insulin did not alter the rate of arrival of rhodamine-labeled transferrin at the recycling endosome. These results reveal a heretofore unknown effect of insulin to accelerate inter-endosomal travel rates of GLUT4 and identify the recycling endosome as an obligatory stage in insulin-dependent GLUT4 recycling.


Subject(s)
Endosomes/drug effects , Insulin/pharmacology , Monosaccharide Transport Proteins/metabolism , Muscle Proteins , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/metabolism , Animals , Cell Line , Endosomes/metabolism , Glucose Transporter Type 4 , Insulin/metabolism , Protein Transport , Proto-Oncogene Proteins c-akt , Rats , Signal Transduction
3.
J Biol Chem ; 276(25): 22883-91, 2001 Jun 22.
Article in English | MEDLINE | ID: mdl-11297538

ABSTRACT

The intracellular traffic of the glucose transporter 4 (GLUT4) in muscle cells remains largely unexplored. Here we make use of L6 myoblasts stably expressing GLUT4 with an exofacially directed Myc-tag (GLUT4myc) to determine the exocytic and endocytic rates of the transporter. Insulin caused a rapid (t(12) = 4 min) gain, whereas hyperosmolarity (0.45 m sucrose) caused a slow (t(12) = 20 min) gain in surface GLUT4myc molecules. With prior insulin stimulation followed by addition of hypertonic sucrose, the increase in surface GLUT4myc was partly additive. Unlike the effect of insulin, the GLUT4myc gain caused by hyperosmolarity was insensitive to wortmannin or to tetanus toxin cleavage of VAMP2 and VAMP3. Disappearance of GLUT4myc from the cell surface was rapid (t(12) = 1.5 min). Insulin had no effect on the initial rate of GLUT4myc internalization. In contrast, hyperosmolarity almost completely abolished GLUT4myc internalization. Surface GLUT4myc accumulation in response to hyperosmolarity was only partially blocked by inhibition of tyrosine kinases with erbstatin analog (erbstatin A) and genistein. However, neither inhibitor interfered with the ability of hyperosmolarity to block GLUT4myc internalization. We propose that hyperosmolarity increases surface GLUT4myc by preventing GLUT4 endocytosis and stimulating its exocytosis via a pathway independent of phosphatidylinositol 3-kinase activity and of VAMP2 or VAMP3. A tetanus toxin-insensitive v-SNARE such as TI-VAMP detected in these cells, might mediate membrane fusion of the hyperosmolarity-sensitive pool.


Subject(s)
Endocytosis , Exocytosis , Membrane Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Muscle Proteins , Muscles/metabolism , Androstadienes/pharmacology , Cell Line , Cell Membrane/metabolism , Glucose Transporter Type 4 , Muscles/cytology , Muscles/enzymology , Osmolar Concentration , Potassium/metabolism , Protein-Tyrosine Kinases/metabolism , R-SNARE Proteins , Tetanus Toxin/pharmacology , Wortmannin
4.
Can J Microbiol ; 47(11): 987-93, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11766059

ABSTRACT

Treatment with Ni(NO3)2 leads to the formation of reactive oxygen species (ROS) in the green alga Scenedesmus acutus f. alternans, causing lipid peroxidation. This effect was stronger in a Ni-sensitive strain, UTEX72, than in a Ni-resistant strain, B4. In the resistant strain, Ni induced an increased ratio of reduced to oxidized glutathione (GSH:GSSG), whereas it caused a lowered ratio in the sensitive strain. Enzymes involved in the control of ROS were studied in these strains as well as two others that have shown different degrees of nickel resistance. The resistant strain, B4, which grows while containing large amounts of internal Ni, had much higher levels of glutathione reductase and catalase than the other strains. The sensitive strain, UTEX72, had higher levels of glutathione peroxidase, superoxide dismutase, and glucose-6-phosphate dehydrogenase than did strain B4. The resistant strains, Ni-Tol and Cu-Tol, derived from strain UTEX72, which are partly able to exclude Ni, had enzyme profiles that resembled that of UTEX72 more closely than that of B4. Treatment with 10 and 100 microM Ni for 4 or 22 h had complex effects on enzyme levels in all four strains. Ni decreased glutathione reductase in B4, slightly increased it in Ni-Tol and Cu-Tol, and did not affect the low levels of this enzyme in UTEX72. Ni lowered glutathione peroxidase in B4 and either did not affect it or slightly raised it in the other strains. Ni lowered catalase in B4 and did not affect the other strains. Superoxide dismutase was raised in B4 and Ni-Tol and lowered in Cu-Tol and UTEX72, and glucose-6-phosphate dehydrogenase was lowered in all four strains. These results suggest that one major mechanism of Ni resistance, especially in strain B4, may be the ability to combat the formation of ROS when exposed to this metal, likely by maintaining a high GSH:GSSG ratio.


Subject(s)
Chlorophyta/metabolism , Nickel/toxicity , Oxidative Stress , Oxidoreductases/metabolism , Antioxidants/metabolism , Catalase/metabolism , Chlorophyta/enzymology , Chlorophyta/genetics , Glucosephosphate Dehydrogenase/metabolism , Glutathione Reductase/metabolism , Lipid Peroxidation/drug effects , Oxidation-Reduction , Sulfhydryl Compounds/metabolism , Superoxide Dismutase/metabolism
5.
Mol Biol Cell ; 11(7): 2403-17, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10888677

ABSTRACT

Like neuronal synaptic vesicles, intracellular GLUT4-containing vesicles must dock and fuse with the plasma membrane, thereby facilitating insulin-regulated glucose uptake into muscle and fat cells. GLUT4 colocalizes in part with the vesicle SNAREs VAMP2 and VAMP3. In this study, we used a single-cell fluorescence-based assay to compare the functional involvement of VAMP2 and VAMP3 in GLUT4 translocation. Transient transfection of proteolytically active tetanus toxin light chain cleaved both VAMP2 and VAMP3 proteins in L6 myoblasts stably expressing exofacially myc-tagged GLUT4 protein and inhibited insulin-stimulated GLUT4 translocation. Tetanus toxin also caused accumulation of the remaining C-terminal VAMP2 and VAMP3 portions in Golgi elements. This behavior was exclusive to these proteins, because the localization of intracellular myc-tagged GLUT4 protein was not affected by the toxin. Upon cotransfection of tetanus toxin with individual vesicle SNARE constructs, only toxin-resistant VAMP2 rescued the inhibition of insulin-dependent GLUT4 translocation by tetanus toxin. Moreover, insulin caused a cortical actin filament reorganization in which GLUT4 and VAMP2, but not VAMP3, were clustered. We propose that VAMP2 is a resident protein of the insulin-sensitive GLUT4 compartment and that the integrity of this protein is required for GLUT4 vesicle incorporation into the cell surface in response to insulin.


Subject(s)
Insulin/metabolism , Membrane Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Muscle Proteins , Actins/metabolism , Animals , Biological Transport , Cell Line , Cell Membrane/metabolism , Glucose Transporter Type 4 , Insulin/pharmacology , Monosaccharide Transport Proteins/genetics , Muscle, Skeletal/cytology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , R-SNARE Proteins , Rats , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tetanus Toxin/metabolism , Vesicle-Associated Membrane Protein 3
SELECTION OF CITATIONS
SEARCH DETAIL
...