Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Chem Biol Interact ; 398: 111096, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38844257

ABSTRACT

Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 µM) and CPF (0.05, 0.5, 5 and 50 µM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.


Subject(s)
Chlorpyrifos , Cyclooxygenase 2 , Hexachlorobenzene , Hypoxia-Inducible Factor 1, alpha Subunit , Receptors, Aryl Hydrocarbon , Triple Negative Breast Neoplasms , Vascular Endothelial Growth Factor A , Chlorpyrifos/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Humans , Hexachlorobenzene/metabolism , Hexachlorobenzene/toxicity , Vascular Endothelial Growth Factor A/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Ligands , Nitric Oxide Synthase Type II/metabolism , Female , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Cell Proliferation/drug effects
2.
Explor Target Antitumor Ther ; 5(2): 278-295, 2024.
Article in English | MEDLINE | ID: mdl-38745771

ABSTRACT

Aim: Triple negative breast cancer (TNBC) is usually treated with high doses of paclitaxel, whose effectiveness may be modulated by the action of environmental contaminants such as hexachlorobenzene. High doses of paclitaxel cause adverse effects such as low cellular selectivity and the generation of resistance to treatment due to an increase in the expression of multidrug resistance proteins (MRPs). These effects can be reduced using a metronomic administration scheme with low doses. This study aimed to investigate whether hexachlorobenzene modulates the response of cells to conventional chemotherapy with paclitaxel or metronomic chemotherapy with paclitaxel plus carbachol, as well as to study the participation of the MRP ATP-binding cassette transporter G2 (ABCG2) in human TNBC MDA-MB231 cells. Methods: Cells were treated with hexachlorobenzene alone or in combination with conventional or metronomic chemotherapies. The effects of treatments on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the nuclear factor kappa B pathway participation was evaluated using a selective inhibitor. ABCG2 expression and its modulation were determined by western blot. Results: Results confirmed that paclitaxel reduces MDA-MB231 cell viability in a concentration-dependent manner. Results also showed that both conventional and metronomic chemotherapies reduced cell viability with similar efficacy. Although hexachlorobenzene did not modify cell viability per se, it did reverse the effect induced by the conventional chemotherapy, without affecting the efficacy of the metronomic chemotherapy. Additionally, a differential modulation of ABCG2 expression was determined, mediated by the nuclear factor kappa B pathway, which was directly related to the modulation of cell sensitivity to another cycle of paclitaxel treatment. Conclusions: The findings indicate that, in human TNBC MDA-MB231 cells, in the presence of hexachlorobenzene, the metronomic combination of paclitaxel plus carbachol is more effective in affecting the tumor biology than the conventional therapeutic administration scheme of paclitaxel.

3.
J Cell Biochem ; 123(7): 1197-1206, 2022 07.
Article in English | MEDLINE | ID: mdl-35538691

ABSTRACT

A reduction in extracellular pH (pHe) is a characteristic of most malignant tumors. The aryl hydrocarbon receptor (AhR) is a transcription factor localized in a cytosolic complex with c-Src, which allows it to trigger nongenomic effects through c-Src. Considering that the slightly acidic tumor microenvironment promotes breast cancer progression in a similar way to the AhR/c-Src axis, our aim was to evaluate whether this pathway could be activated by low pHe. We examined the effect of pHe 6.5 on AhR/c-Src axis using two breast cancer cell lines (MDA-MB-231 and LM3) and mammary epithelial cells (NMuMG) and found that acidosis increased c-Src phosphorylation only in tumor cells. Moreover, the presence of AhR inhibitors prevented c-Src activation. Low pHe reduced intracellular pH (pHi), while amiloride treatment, which is known to reduce pHi, induced c-Src phosphorylation through AhR. Analyses were conducted on cell migration and metalloproteases (MMP)-2 and -9 activities, with results showing an acidosis-induced increase in MDA-MB-231 and LM3 cell migration and MMP-9 activity, but no changes in NMuMG cells. Moreover, all these effects were blocked by AhR and c-Src inhibitors. In conclusion, acidosis stimulates the AhR/c-Src axis only in breast cancer cells, increasing cell migration and MMP-9 activity. Although the AhR activation mechanism still remains elusive, a reduction in pHi may be thought to be involved. These findings suggest a critical role for the AhR/c-Src axis in breast tumor progression stimulated by an acidic microenvironment.


Subject(s)
Acidosis , Breast Neoplasms , Breast Neoplasms/metabolism , CSK Tyrosine-Protein Kinase , Cell Line, Tumor , Cell Movement , Female , Humans , Matrix Metalloproteinase 9/metabolism , Protein-Tyrosine Kinases/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Tumor Microenvironment
4.
Medicina (B Aires) ; 81(3): 346-358, 2021.
Article in English | MEDLINE | ID: mdl-34137693

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver tumor. Hexachlorobenzene (HCB) is an endocrine disruptor and a liver tumor promoter. Deregulation of thyroid hormone (TH) homeostasis may play a significant role in early neoplastic transformation. The aim of this study was to evaluate the relation between TH metabolism and the regulation of cell growth in an in vivo and in vitro model. We examined the role of transforming growth factor-ß1 (TGF-ß1) on TH deiodinase expression and hepatocyte proliferation. An initiation (DEN)/promotion (HCB) tumor model from rat liver and HepG2 cells were used. We evaluated PCNA, p21, p27, SMAD2/3, TGF-ß1, deiodinase 1 (D1), D3, protein expression levels; D1 and D3 mRNA expression; TH and TGF-ß1, D1, D3, and GST-P protein levels in focal/non-focal areas. In vivo, HCB decreased triiodothyronine (T3) and D1 mRNA levels and increased thyroxine (T4) and D3 mRNA levels in liver from DEN+HCB vs. DEN group. HCB increased protein levels from D3, TGF-ß1, and PCNA and decreased D1 in focal-areas. In vitro, HCB increased PCNA, pSMAD 2/3, and TGF-ß1 protein levels and mRNA expression and decreased p21 and p27 protein levels. Exogenous T3 treatment prevent HCB induced molecular alterations related to hepatocyte proliferation whereas T4 did not have any effect. These effects were prevented by using a TGF-ß1 receptor II inhibitor. Results suggest that alteration of TH homeostasis, through D1 function, play a key role in hepatocyte proliferation and that TGF-ß1-SMAD pathway is involved in this process confirming their role in early neoplastic transformation in HCC.


El hepatocarcinoma (HCC) es un tumor hepático primario. El hexaclorobenceno (HCB) es un disruptor endocrino y un promotor de tumores hepáticos. La desregulación de la homeostasis de las hormonas tiroideas (HT) puede ser un proceso importante para la transformación neoplásica temprana. Nuestro objetivo fue evaluar la relación entre el metabolismo de las HT y la regulación de la proliferación celular. Se utilizó un modelo tumoral de iniciación (DEN)/promoción (HCB) de hígado de rata (in vivo) (DEN/HCB) y células HepG2 (in vitro). Evaluamos los niveles de PCNA, p21, p27, SMAD2/3, TGF-ß1, D1, D3, ARNm de D1 y D3, HT y los niveles de TGF-ß1, D1, D3 y GST-P en áreas focales/no focales. In vivo, HCB disminuyó los niveles de T3 y ARNm de la D1 y aumentó los niveles de T4 y ARNm de D3 del grupo DEN + HCB frente al grupo DEN. El HCB aumentó los niveles de D3, TGF-ß1 y PCNA y disminuyó el D1 en las áreas focales. In vitro, HCB aumentó los niveles de PCNA, pSMAD 2/3 y TGF-ß1 y la expresión de ARNm mientras que disminuyó los niveles de p21 y p27. El tratamiento con T3 exógeno previno las alteraciones moleculares relacionadas con la proliferación hepatocitaria. Estos efectos se evitaron utilizando un inhibidor del receptor II de TGF-ß1. Los resultados sugieren que la alteración de la homeostasis de HT, a través de la D1 y la vía TGF-ß1-SMAD, juega un papel clave en la proliferación celular y en las transformaciones neoplásicas tempranas en el HCC.


Subject(s)
Carcinoma, Hepatocellular , Iodide Peroxidase , Liver Neoplasms , Transforming Growth Factor beta1 , Animals , Cell Proliferation , Iodide Peroxidase/genetics , Rats
5.
Medicina (B.Aires) ; Medicina (B.Aires);81(3): 346-358, jun. 2021. graf
Article in English | LILACS | ID: biblio-1346469

ABSTRACT

Abstract Hepatocellular carcinoma (HCC) is the most common primary liver tumor. Hexachlorobenzene (HCB) is an endocrine disruptor and a liver tumor promoter. Deregulation of thyroid hormone (TH) homeostasis may play a significant role in early neoplastic transformation. The aim of this study was to evaluate the relation between TH metabolism and the regulation of cell growth in an in vivo and in vitro model. We examined the role of transforming growth factor-β1 (TGF-β1) on TH deiodinase expression and hepatocyte proliferation. An initiation (DEN)/promotion (HCB) tumor model from rat liver and HepG2 cells were used. We evaluated PCNA, p21, p27, SMAD2/3, TGF-β1, deiodinase 1 (D1), D3, protein expression levels; D1 and D3 mRNA expression; TH and TGF-β1, D1, D3, and GST-P protein levels in focal/non-focal areas. In vivo, HCB decreased triiodothyronine (T3) and D1 mRNA levels and increased thyroxine (T4) and D3 mRNA levels in liver from DEN+HCB vs. DEN group. HCB increased protein levels from D3, TGF-β1, and PCNA and decreased D1 in focal-areas. In vitro, HCB increased PCNA, pSMAD 2/3, and TGF-β1 protein levels and mRNA expression and decreased p21 and p27 protein levels. Exogenous T3 treatment prevent HCB induced molecular alterations related to hepatocyte proliferation whereas T4 did not have any effect. These effects were prevented by using a TGF-β1 receptor II inhibitor. Results suggest that alteration of TH homeostasis, through D1 function, play a key role in hepatocyte proliferation and that TGF-β1-SMAD pathway is involved in this process confirming their role in early neoplastic transformation in HCC.


Resumen El hepatocarcinoma (HCC) es un tumor hepático primario. El hexaclorobenceno (HCB) es un disruptor endocrino y un promotor de tumores hepáticos. La desregulación de la homeostasis de las hormonas tiroideas (HT) puede ser un proceso importante para la transformación neoplásica temprana. Nuestro objetivo fue evaluar la relación entre el metabolismo de las HT y la regulación de la prolifera ción celular. Se utilizó un modelo tumoral de iniciación (DEN)/promoción (HCB) de hígado de rata (in vivo) (DEN/ HCB) y células HepG2 (in vitro). Evaluamos los niveles de PCNA, p21, p27, SMAD2/3, TGF-β1, D1, D3, ARNm de D1 y D3, HT y los niveles de TGF-β1, D1, D3 y GST-P en áreas focales/no focales. In vivo, HCB disminuyó los niveles de T3 y ARNm de la D1 y aumentó los niveles de T4 y ARNm de D3 del grupo DEN + HCB frente al grupo DEN. El HCB aumentó los niveles de D3, TGF-β1 y PCNA y disminuyó el D1 en las áreas focales. In vitro, HCB aumentó los niveles de PCNA, pSMAD 2/3 y TGF-β1 y la expresión de ARNm mientras que disminuyó los niveles de p21 y p27. El tratamiento con T3 exógeno previno las alteraciones moleculares relacionadas con la proliferación hepatocitaria. Estos efectos se evitaron utilizando un inhibidor del receptor II de TGF-β1. Los resultados sugieren que la alteración de la homeostasis de HT, a través de la D1 y la vía TGF-β1-SMAD, juega un papel clave en la proliferación celular y en las transformaciones neoplásicas tempranas en el HCC.


Subject(s)
Animals , Rats , Carcinoma, Hepatocellular , Transforming Growth Factor beta1 , Iodide Peroxidase/genetics , Liver Neoplasms , Cell Proliferation
6.
Biochem Pharmacol ; 175: 113904, 2020 05.
Article in English | MEDLINE | ID: mdl-32156659

ABSTRACT

Breast cancer is the most common cancer type in females worldwide. Environmental exposure to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but may influence gene expression by disturbances in epigenetic regulation. Expression of long interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several cancers. In nearly all somatic cells, LINE-1 is silenced by DNA methylation in the 5́'UTR and reactivated during disease initiation and/or progression. Strong ligands of aryl hydrocarbon receptor (AhR) activate LINE-1 through the transforming growth factor-ß1 (TGF-ß1)/Smad pathway. Hexachlorobenzene (HCB) and chlorpyrifos (CPF), both weak AhR ligands, promote cell proliferation and migration in breast cancer cells, as well as tumor growth in rat models. In this context, our aim was to examine the effect of these pesticides on LINE-1 expression and ORF1p localization in the triple-negative breast cancer cell line MDA-MB-231 and the non-tumorigenic epithelial breast cell line NMuMG, and to evaluate the role of TGF-ß1 and AhR pathways. Results show that 0.5 µM CPF and 0.005 µM HCB increased LINE-1 mRNA expression through Smad and AhR signaling in MDA-MB-231. In addition, the methylation of the first sites in 5́'UTR of LINE-1 was reduced by pesticide exposure, although the farther sites remained unaffected. Pesticides modulated ORF1p localization in MDA-MB-231: 0.005 µM HCB and 50 µM CPF increased nuclear translocation, while both induced cytoplasmic retention at 0.5 and 5 µM. Moreover, both stimulated double-strand breaks, enhancing H2AX phosphorylation, coincidentally with ORF1p nuclear localization. In NMuMG similar results were observed, since they heighten LINE-1 mRNA levels. CPF effect was through AhR and TGF-ß1 signaling, whereas HCB action depends only of AhR. In addition, both pesticides increase ORF1p expression and nuclear localization. Our results provide experimental evidence that HCB and CPF exposure modify LINE-1 methylation levels and induce LINE-1 reactivation, suggesting that epigenetic mechanisms could contribute to pesticide-induced breast cancer progression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Epithelial Cells/metabolism , Long Interspersed Nucleotide Elements/physiology , Receptors, Aryl Hydrocarbon/metabolism , Retroelements/physiology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/pathology , Female , Hexachlorobenzene/metabolism , Hexachlorobenzene/toxicity , Humans , Ligands , Long Interspersed Nucleotide Elements/drug effects , Retroelements/drug effects , Triple Negative Breast Neoplasms/pathology
7.
Salud(i)ciencia (Impresa) ; 22(8): 734-742, dic.-mar. 2018. ilus.
Article in Spanish | BINACIS, LILACS | ID: biblio-1026422

ABSTRACT

Hexachlorobenzene (HCB) is a widespread environmental pollutant and an endocrine disruptor. Chronic exposure of humans to HCB elicits porphyria, neurologic symptoms, immune disorders and thyroid dysfunctions. It is a dioxin-like compound and a weak ligand of the AhR (aryl hydrocarbon receptor), a transcription factor that modulates genes related to detoxification, proliferation, migration and invasion. This study was carried out to revise the results of HCB action on mammary gland and breast cancer, summarizing the main ideas of its mechanism of action. HCB increases tumor development and active c-Src/EGFR (epidermal growth factor receptor) signaling pathways, while reducing tyrosine537-ER-alpha (estrogen receptor-alpha) phosphorylation, and promoting a phenotype with enhanced malignancy and lung metastasis in different animal models. In a rat mammary gland, HCB promotes an estrogenic microenvironment by activation of ER-alpha and Insulin/IGFs (insulin growth factors) pathways. HCB induces cell proliferation, promoting cell cycle progression and enhancing cyclin D1 expression and c-Src/p27 interaction in (ER-alpha) MCF-7 human breast cancer cell line. In (ER-alpha)(-) MDA-MB-231 breast cancer cells, the pesticide enhances cell migration and invasion as well as metalloproteases and TGF-beta1 (transformig growth factor-beta1) expression. In conclusion our current study suggests that alterations in the estrogenic microenvironment may influence the biological behavior of mammary gland or breast tumors, leading to preneoplastic lesions or enhanced malignancy, respectively. Our findings suggest that HCB may be a risk factor for human breast cancer progression.


El hexaclorobenceno (HCB) es un contaminante ambiental ampliamente distribuido y un desorganizador endocrino. Su exposición crónica en seres humanos produce porfiria, síntomas neurológicos, trastornos inmunitarios y disfunciones tiroideas. Es un agonista débil del receptor de hidrocarburos aromáticos (AhR), un factor de transcripción que modula genes relacionados con el metabolismo de xenobióticos, la proliferación, la migración y la invasión. Nuestro objetivo es revisar los efectos del HCB en la glándula mamaria y el cáncer mamario, resumiendo los principales mecanismos de acción. El HCB aumenta el desarrollo tumoral y activa vías de señalización de c-Src/receptor del factor de crecimiento epidérmico (EGFR), mientras que disminuye la fosforilación de tirosina 537/receptor de estrógenos alfa (RE-alfa), promoviendo un fenotipo de mayor malignidad y metástasis pulmonar en diferentes modelos con animales. En la glándula mamaria de rata genera un microambiente estrogénico por activación del RE-alfa y las vías de insulina/factores de crecimiento similares a la insulina (IGF). En células de cáncer mamario humanas MCF-7 (RE-alfa) induce proliferación celular, promoviendo la progresión del ciclo, aumentando la ciclina D1 y la interacción p27/c-Src. En MDA-MB-231 (-RE-alfa) estimula la migración e invasión, así como la expresión de metaloproteasas y factor de crecimiento transformante beta 1 (TGF-beta 1). Estos estudios indican que las alteraciones en el microambiente estrogénico podrían influir el comportamiento biológico de la glándula mamaria y los tumores, lo que provoca lesiones preneoplásicas o aumento en la malignidad tumoral mamaria. Nuestros hallazgos sugieren que el HCB podría ser un factor de riesgo para la progresión del cáncer de mama humano.


Subject(s)
Humans , Pesticides , Breast Neoplasms , Hexachlorobenzene
8.
Toxicol Appl Pharmacol ; 334: 192-206, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28923513

ABSTRACT

Hexachlorobenzene (HCB) is a widespread environmental pollutant and a dioxin-like compound that binds weakly to the aryl hydrocarbon receptor (AhR). Because AhR and transforming growth factor ß1 (TGF-ß1) converge to regulate common signaling pathways, alterations in this crosstalk might contribute to developing preneoplastic lesions. The aim of this study was to evaluate HCB action on TGF-ß1 and AhR signaling in mouse mammary gland, through AhR+/+ and AhR-/- models. Results showed a differential effect in mouse mammary epithelial cells (NMuMG), depending on the dose: 0.05µM HCB induced cell migration and TGF-ß1 signaling, whereas 5µM HCB reduced cell migration, promoted cell cycle arrest and stimulated the dioxin response element (DRE) -dependent pathway. HCB (5µM) enhanced α-smooth muscle actin expression and decreased TGF-ß receptor II mRNA levels in immortalized mouse mammary fibroblasts AhR+/+, resembling the phenotype of transformed cells. Accordingly, their conditioned medium was able to enhance NMuMG cell migration. Assays in C57/Bl6 mice showed HCB (3mg/kg body weight) to enhance ductal hyperplasia, cell proliferation, estrogen receptor α nuclear localization, branch density, and the number of terminal end buds in mammary gland from AhR+/+ mice. Primary culture of mammary epithelial cells from AhR+/+ mice showed reduced AhR mRNA levels after HCB exposure (0.05 and 5µM). Interestingly, AhR-/- mice exhibited an increase in ductal hyperplasia and mammary growth in the absence of HCB treatment, thus revealing the importance of AhR in mammary development. Our findings show that environmental HCB concentrations modulate AhR and TGF-ß1 signaling, which could contribute to altered mammary branching morphogenesis, likely leading to preneoplastic lesions and retaining terminal end buds.


Subject(s)
Environmental Pollutants/toxicity , Hexachlorobenzene/toxicity , Hyperplasia/chemically induced , Mammary Glands, Animal/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Transforming Growth Factor beta1/metabolism , Actins/genetics , Actins/metabolism , Animals , Cell Line , Female , Gene Expression Regulation/physiology , Mammary Glands, Animal/cytology , Mammary Glands, Animal/pathology , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Transforming Growth Factor beta1/genetics
9.
J Steroid Biochem Mol Biol ; 156: 1-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26518068

ABSTRACT

Endocrine disruptors (EDs) are compounds that interfere with hormone regulation and influence mammary carcinogenesis. We have previously demonstrated that the pesticide chlorpyrifos (CPF) acts as an ED in vitro, since it induces human breast cancer cells proliferation through estrogen receptor alpha (ERα) pathway. In this work, we studied the effects of CPF at environmental doses (0.01 and 1mg/kg/day) on mammary gland, steroid hormone receptors expression and serum steroid hormone levels. It was carried out using female Sprague-Dawley 40-days-old rats exposed to the pesticide during 100 days. We observed a proliferating ductal network with a higher number of ducts and alveolar structures. We also found an increased number of benign breast diseases, such as hyperplasia and adenosis. CPF enhanced progesterone receptor (PgR) along with the proliferating cell nuclear antigen (PCNA) in epithelial ductal cells. On the other hand, the pesticide reduced the expression of co-repressors of estrogen receptor activity REA and SMRT and it decreased serum estradiol (E2), progesterone (Pg) and luteinizing hormone (LH) levels. Finally, we found a persistent decrease in LH levels among ovariectomized rats exposed to CPF. Therefore, CPF alters the endocrine balance acting as an ED in vivo. These findings warn about the harmful effects that CPF exerts on mammary gland, suggesting that this compound may act as a risk factor for breast cancer.


Subject(s)
Chlorpyrifos/adverse effects , Endocrine Disruptors/adverse effects , Environmental Pollutants/adverse effects , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Pesticides/adverse effects , Animals , Estradiol/blood , Estrogen Receptor alpha/analysis , Female , Luteinizing Hormone/blood , Progesterone/analysis , Progesterone/blood , Prohibitins , Rats , Rats, Sprague-Dawley , Receptors, Progesterone/analysis
10.
Acta toxicol. argent ; 23(3): 142-152, dic. 2015. graf
Article in Spanish | LILACS | ID: biblio-837846

ABSTRACT

El clorpirifos (CPF) es un insecticida de amplio espectro que se utiliza en Argentina y en otros países de Latinoamérica. Se emplea para el control de plagas en la producción de frutas, hortalizas, cereales y plantas ornamentales. El principal mecanismo de acción descripto para este insecticida es la inhibición de la acetilcolinesterasa. Sin embargo, reportes más recientes sugieren múltiples efectos del plaguicida independientes de la inhibición de esa enzima. El objetivo de este trabajo es transmitir a la comunidad los resultados de nuestras investigaciones obtenidos utilizando diferentes dosis de CPF en distintos modelos experimentales, tanto in vitro como in vivo. En relación a esto, hemos evidenciado una acción del CPF sobre el sistema redox celular que conduce al incremento de especies reactivas del oxígeno y consecuentemente a la activación de diferentes vías de señalización. Además, hemos determinado que el insecticida CPF puede comportarse como un disruptor endócrino modulando la acción de los estrógenos y alterando la normal estructura del tejido mamario. Nuestros resultados alertan sobre el impacto que este compuesto podría tener sobre la salud, sugiriendo la necesidad de revisar su uso dado que manifiesta acciones a dosis encontradas en el ambiente.


Chlorpyrifos (CPF) is a broad spectrum insecticide used in Argentina and other Latin American countries. It is commonly used for pest control in the production of fruits, vegetables, cereals and ornamental plants. The main mechanism of action described for this insecticide is the inhibition of acetylcholinesterase activity. However, more recent reports suggest multiple effects for this pesticide in an independent way from the inhibition of this enzyme. The objective of this work is to convey to the community the results of our investigations obtained using different doses of CPF in various experimental models, both in vitro and in vivo. In this connection, we have shown a CPF action on the cellular redox system which leads to increased reactive oxygen species and the consequent activation of different signaling pathways. In addition, we have determined that the insecticide CPF acts as an endocrine disruptor modulating the action of estrogen and altering the normal structure of breast tissue. Our findings warn about the impact that this compound might have on health, suggesting the need to review its use since adverse actions were found at environmentally relevant doses.


Subject(s)
Humans , Animals , Rats , Breast Neoplasms/enzymology , Endocrine Disruptors/toxicity , Organophosphorus Compounds/toxicity , Oxidation-Reduction , Oxidative Phosphorylation , Breast Neoplasms/chemically induced , Mammary Neoplasms, Experimental , Neoplasm Metastasis/ultrastructure
11.
Toxicology ; 336: 36-47, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26219504

ABSTRACT

Hexachlorobenzene (HCB) is a widespread environmental pollutant, and a liver tumor promoter in rodents. Depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, terminal differentiation, or apoptosis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in drug and xenobiotic metabolism. AhR can also modulate a variety of cellular and physiological processes that can affect cell proliferation and cell fate determination. The mechanisms by which AhR ligands, both exogenous and endogenous, affect these processes involve multiple interactions between AhR and other signaling pathways. In the present study, we examined the effect of HCB on cell proliferation and AhR expression, using an initiation-promotion hepatocarcinogenesis protocol in rat liver and in the human-derived hepatoma cell line, HepG2. Female Wistar rats were initiated with a single dose of 100 mg/kg of diethylnitrosamine (DEN) at the start of the experiment. Two weeks later, daily dosing of 100 mg/kg HCB was maintained for 10 weeks. Partial hepatectomy was performed 3 weeks after initiation. The number and area of glutathione S-transferase-P (GST-P)-positive foci, in the rat liver were used as biomarkers of liver precancerous lesions. Immunohistochemical staining showed an increase in proliferating cell nuclear antigen (PCNA)-positive cells, along with enhanced AhR protein expression in hepatocytes within GST-P-positive foci of (DEN HCB) group, when compared to DEN. In a similar manner, Western blot analysis demonstrated that HCB induced PCNA and AhR protein expression in HepG2 cells. Flow cytometry assay indicated that the cells were accumulated at S and G2/M phases of the cell cycle. HCB increased cyclin D1 protein levels and ERK1/2 phosphorylation in a dose-dependent manner. Treatment of cells with a selective MEK1 inhibitor, prevented HCB-stimulatory effect on PCNA and cyclinD1, indicating that these effects are mediated by ERK1/2. Pretreatment with an AhR antagonist, prevented HCB-induced PCNA protein levels, ERK1/2 phosphorylation and alterations in cell cycle distribution. These results demonstrate that HCB-induced HepG2 proliferation and cell cycle progression depend on ERK1/2 phosphorylation which is mediated by the AhR. Our results provide a clue to the molecular events involved in the mechanism of action of HCB-induced hepatocarcinogenesis.


Subject(s)
Cell Cycle/drug effects , Cell Proliferation/drug effects , Hep G2 Cells/drug effects , Hexachlorobenzene/toxicity , Liver Neoplasms, Experimental/chemically induced , MAP Kinase Signaling System/drug effects , Precancerous Conditions/chemically induced , Receptors, Aryl Hydrocarbon/biosynthesis , Animals , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver Neoplasms, Experimental/metabolism , Rats , Rats, Wistar , Receptors, Aryl Hydrocarbon/drug effects
12.
Chemosphere ; 120: 343-50, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25180937

ABSTRACT

It is well known the participation of oxidative stress in the induction and development of different pathologies including cancer, diabetes, neurodegeneration and respiratory disorders among others. It has been reported that oxidative stress may be induced by pesticides and it could be the cause of health alteration mediated by pollutants exposure. Large number of registered products containing chlorpyrifos (CPF) is used to control pest worldwide. We have previously reported that 50 µM CPF induces ROS generation and produces cell cycle arrest followed by cell death. The present investigation was designed to identify the pathway involved in CPF-inhibited cell proliferation in MCF-7 and MDA-MB-231 breast cancer cell lines. In addition, we determined if CPF-induced oxidative stress is related to alterations in antioxidant defense system. Finally we studied the molecular mechanisms underlying in the cell proliferation inhibition produced by the pesticide. In this study we demonstrate that CPF (50 µM) induces redox imbalance altering the antioxidant defense system in breast cancer cells. Furthermore, we found that the main mechanism involved in the inhibition of cell proliferation induced by CPF is an increment of p-ERK1/2 levels mediated by H2O2 in breast cancer cells. As PD98059 could not abolish the increment of ROS induced by CPF, we concluded that ERK1/2 phosphorylation is subsequent to ROS production induced by CPF but not the inverse.


Subject(s)
Antioxidants/metabolism , Cell Proliferation/drug effects , Chlorpyrifos/toxicity , Insecticides/toxicity , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Cell Line, Tumor , Humans , MCF-7 Cells , Oxidation-Reduction , Phosphorylation/drug effects
13.
Toxicol Lett ; 230(1): 1-9, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25093615

ABSTRACT

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the environment. In this study we have demonstrated that HCB induced loss of cell viability and alterations in cell cycle regulation in FRTL-5 rat thyroid cells. Analysis of cell cycle distribution by flow cytometric analysis demonstrated that HCB induced cell cycle arrest at G2/M and at G0/G1 phase, inhibiting cell cycle progression at the G1/S phase, after 24 h and 72 h of treatment. HCB-treatment resulted in an increase in transforming growth factor-beta (TGF-ß1) mRNA levels, a negative regulator of cell growth in thyroid epithelial cells. Time-dependent studies showed that both cytosolic and nuclear p27 protein levels were increased by 5 µM HCB. After 24 h of treatment, total p27 in whole cells lysate was increased. Dose-dependent studies, demonstrated that HCB (0.005, 0.05, 0.5 and 5 µM) increased p27, both in the cytosol and nucleus. HCB (5 µM) induced a concomitant decrease in nuclear cyclin D1 protein levels, in a time-dependent manner. We have also demonstrated that TGF-ß1 Smad signaling is involved in HCB-induced alterations of p27 and cyclin D1 protein levels. On the other hand, ERK1/2 activation is not involved in the alteration of cell cycle regulatory proteins.


Subject(s)
Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Hexachlorobenzene/toxicity , Pesticides/toxicity , Thyroid Gland/drug effects , Transforming Growth Factor beta1/metabolism , Animals , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , G1 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , RNA, Messenger/metabolism , Rats , Resting Phase, Cell Cycle/drug effects , Signal Transduction/drug effects , Smad Proteins/metabolism , Thyroid Gland/metabolism , Thyroid Gland/pathology , Time Factors , Transforming Growth Factor beta1/genetics , Up-Regulation
14.
Toxicol Sci ; 134(2): 276-90, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23708402

ABSTRACT

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the environment. We have previously shown that chronic HCB exposure triggers apoptosis in rat thyroid follicular cells. This study was carried out to investigate the molecular mechanism by which the pesticide causes apoptosis in FRTL-5 rat thyroid cells exposed to HCB (0.005, 0.05, 0.5, and 5µM) for 2, 6, 8, 24, and 48h. HCB treatment lowered cell viability and induced apoptotic cell death in a dose- and time-dependent manner, as demonstrated by morphological nuclear changes and the increase of DNA fragmentation. The pesticide increased activation of caspases-3, -8, and full-length caspase-10 processing. HCB induced mitochondrial membrane depolarization, release of cytochrome c and apoptosis-inducing factor (AIF), from the mitochondria to the cytosol, and AIF nuclear translocation. Cell death was accompanied by an increase in reactive oxygen species (ROS) generation. Blocking of ROS production, with a radical scavenger (Trolox), resulted in inhibition of AIF nuclear translocation and returned cells survival to control levels, demonstrating that ROS are critical mediators of HCB-induced apoptosis. The pesticide increased ERK1/2, JNK, and p38 phosphorylation in a time- and dose-dependent manner. However, when FRTL-5 cells were treated with specific MAPK inhibitors, only blockade of MEK1/2 with PD98059 prevented cell loss of viability, as well as caspase-3 activation. In addition, we demonstrated that HCB-induced production of ROS has a critical role in ERK1/2 activation. These results demonstrate for the first time that HCB induces apoptosis in FRTL-5 cells, by ROS-mediated ERK1/2 activation, through caspase-dependent and -independent pathways.


Subject(s)
Apoptosis/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Hexachlorobenzene/toxicity , Reactive Oxygen Species/metabolism , Thyroid Gland/drug effects , Animals , Caspases/metabolism , Cell Line , Enzyme Activation , Mitochondria/drug effects , Phosphorylation , Rats , Thyroid Gland/cytology , Thyroid Gland/metabolism
15.
Toxicol Appl Pharmacol ; 268(3): 331-42, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23462309

ABSTRACT

Hexachlorobenzene (HCB) is a widespread organochlorine pesticide, considered a possible human carcinogen. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). We have found that HCB activates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration, in an AhR-dependent manner in MDA-MB-231 breast cancer cells. The aim of this study was to investigate in vitro the effect of HCB (0.005, 0.05, 0.5, 5µM) on cell invasion and metalloproteases (MMPs) 2 and 9 activation in MDA-MB-231 cells. Furthermore, we examined in vivo the effect of HCB (0.3, 3, 30mg/kg b.w.) on tumor growth, MMP2 and MMP9 expression, and metastasis using MDA-MB-231 xenografts and two syngeneic mouse breast cancer models (spontaneous metastasis using C4-HI and lung experimental metastasis using LM3). Our results show that HCB (5µM) enhances MMP2 expression, as well as cell invasion, through AhR, c-Src/HER1 pathway and MMPs. Moreover, HCB increases MMP9 expression, secretion and activity through a HER1 and AhR-dependent mechanism, in MDA-MB-231 cells. HCB (0.3 and 3mg/kg b.w.) enhances subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. In vivo, using MDA-MB-231 model, the pesticide (0.3, 3 and 30mg/kg b.w.) activated c-Src, HER1, STAT5b, and ERK1/2 signaling pathways and increased MMP2 and MMP9 protein levels. Furthermore, we observed that HCB stimulated lung metastasis regardless the tumor hormone-receptor status. Our findings suggest that HCB may be a risk factor for human breast cancer progression.


Subject(s)
Fungicides, Industrial/toxicity , Hexachlorobenzene/toxicity , Mammary Neoplasms, Experimental/chemically induced , Neoplasm Invasiveness , Xenograft Model Antitumor Assays/methods , Animals , Cell Line, Tumor , Female , Humans , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness/pathology
16.
Toxicol Lett ; 213(2): 184-93, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22771950

ABSTRACT

It has reported that many environmental compounds may display estrogenic actions and these findings led to researchers to associate breast cancer risk with the use of some pesticides. The aim of this work was to investigate the effect of chlorpyrifos (CPF) on cell proliferation and the ERα-dependence of this action employing MCF-7 and MDA-MB-231 breast cancer cell lines. We have also analyzed CPF action on the cell cycle distribution and the cyclins that are implicated in G1-S and intra-S checkpoints. Finally, the action on cell death and ROS production were studied. We demonstrated the ability of CPF 0.05µM to induce cell proliferation through ERα in hormone-dependent breast cancer cells. In contrast, CPF 50µM induces intra-S arrest modifying checkpoints proteins, through a mechanism that may involve changes in redox balance in MCF-7. In MDA-MB-231, we have found that CPF 50µM produces an arrest in G2/M phase which could be related to the capacity of the pesticide for binding to tubulin sites altering microtubules polymerization. Altogether, our results provide new evidences on the action of the pesticide CPF as an environmental breast cancer risk factor due to the effects that causes on the mechanisms that modulate breast cell proliferation.


Subject(s)
Breast Neoplasms/chemically induced , Chlorpyrifos/toxicity , Estrogen Receptor alpha/metabolism , Insecticides/toxicity , Neoplasms, Hormone-Dependent/chemically induced , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclins/metabolism , Female , Flow Cytometry , Humans , MCF-7 Cells , Neoplasms, Hormone-Dependent/metabolism , Neoplasms, Hormone-Dependent/pathology , Oxidation-Reduction , Phosphorylation
17.
Toxicology ; 293(1-3): 68-77, 2012 Mar 11.
Article in English | MEDLINE | ID: mdl-22245120

ABSTRACT

Hexachlorobenzene (HCB) is an organochlorine pesticide that acts as an endocrine disruptor in humans and rodents. The development of breast cancer strongly depends on endocrine conditions modulated by environmental factors. We have demonstrated that HCB is a tumor co-carcinogen in rats and an inducer of proliferation in MCF-7 cells, in an estrogen receptor α (ERα)-dependent manner, and of migration in MDA-MB-231 breast cancer cell line. In the present study, we examined HCB effect on c-Src/human epidermal growth factor receptor (HER1) and ERα signaling pathways in mammary glands and in N-nitroso-N-methylurea (NMU)-induced mammary tumors in rats. Furthermore, we evaluated histopathological changes and serum hormone levels. Rats were separated into four groups: control, HCB (100 mg/kg b.w.), NMU (50 mg/kg b.w.) and NMU-HCB. Our data show that HCB increases c-Src and HER1 activation, c-Src/HER1 association, and Y699-STAT5b and ERK1/2 phosphorylation in mammary glands. HCB also enhances Y537-ERα phosphorylation and ERα/c-Src physical interaction. In tumors, HCB also induces c-Src and HER1 activation, c-Src/HER1 association, as well as T308-Akt and Y699-STAT5b phosphorylation. In addition, the pesticide increases ERα protein content and decreases p-Y537-ERα levels and ERα/c-Src association in tumors. HCB increases serum 17-beta estradiol and prolactin contents and decreases progesterone, FSH and LH levels in rats without tumors, while the opposite effect was observed in rats with tumors. Taken together, our results indicate that HCB induces an estrogenic effect in mammary gland, increasing c-Src/HER1 and ERα signaling pathways. HCB stimulates c-Src/HER1 pathway, but decreases ERα activity in tumors, appearing to shift them towards a higher malignancy phenotype.


Subject(s)
ErbB Receptors/metabolism , Estrogen Receptor alpha/metabolism , Hexachlorobenzene/toxicity , Mammary Glands, Animal/drug effects , Mammary Neoplasms, Experimental/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Signal Transduction , Animals , Cocarcinogenesis , Endocrine Disruptors/toxicity , Female , Gonadal Steroid Hormones/blood , Humans , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/blood , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Neoplasm Proteins/metabolism , Pesticides/toxicity , Phosphorylation/drug effects , Pituitary Hormones, Anterior/blood , Random Allocation , Rats , Rats, Sprague-Dawley
18.
Toxicology ; 289(1): 19-27, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21787832

ABSTRACT

Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the biosphere. The aim of the present study was to investigate the effect of HCB on the homeostasis of liver cell growth, analyzing parameters of cell proliferation and apoptosis, in HCB (0.1, 1, 10 and 100 mg/kg body weight)-treated rats, during 4 weeks. Cell proliferation and ERK1/2 phosphorylation, associated with survival mechanisms, were increased at HCB 100 mg/kg. The pesticide increased the number of apoptotic cells, and the activation of caspase-3, -9 and -8, in a dose-dependent manner, suggesting that HCB-induced apoptosis is mediated by caspases. Increased Fas and FasL protein levels indicate that the death receptor pathway is also involved. This process is associated with decreased Bid, and increased cytosolic cytochrome c protein levels. Transforming growth factor-beta1 (TGF-ß1) intervenes in apoptotic and/or proliferative processes in hepatocytes. TGF-ß1 cDNA and protein levels are dose-dependently increased, suggesting that this cytokine might be involved in HCB-induced dysregulation of cell proliferation and apoptosis. In conclusion, this study reports for the first time that HCB induces loss of the homeostatic balance between cell growth and cell death in rat liver. Induced apoptosis occurs by mechanisms involving signals emanating from death receptors, and the mitochondrial pathway.


Subject(s)
Hexachlorobenzene/toxicity , Liver/drug effects , Pesticides/toxicity , Animals , Apoptosis/drug effects , Blotting, Western , Caspases/metabolism , Cell Growth Processes/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Liver/cytology , Liver/enzymology , Liver/metabolism , RNA/chemistry , RNA/genetics , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
19.
Toxicol Sci ; 120(2): 284-96, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21205633

ABSTRACT

Hexachlorobenzene (HCB) is a widespread environmental pollutant. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR) protein. HCB is a tumor cocarcinogen in rat mammary gland and an inducer of cell proliferation and c-Src kinase activity in MCF-7 breast cancer cells. This study was carried out to investigate HCB action on c-Src and the human epidermal growth factor receptor (HER1) activities and their downstream signaling pathways, Akt, extracellular-signal-regulated kinase (ERK1/2), and signal transducers and activators of transcription (STAT) 5b, as well as on cell migration in a human breast cancer cell line, MDA-MB-231. We also investigated whether the AhR is involved in HCB-induced effects. We have demonstrated that HCB (0.05µM) produces an early increase of Y416-c-Src, Y845-HER1, Y699-STAT5b, and ERK1/2 phosphorylation. Moreover, our results have shown that the pesticide (15 min) activates these pathways in a dose-dependent manner (0.005, 0.05, 0.5, and 5µM). In contrast, HCB does not alter T308-Akt activation. Pretreatment with a specific inhibitor for c-Src (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine [PP2]) prevents Y845-HER1 and Y699-STAT5b phosphorylation. AG1478, a specific HER1 inhibitor, abrogates HCB-induced STAT5b and ERK1/2 activation, whereas 4,7-orthophenanthroline and α-naphthoflavone, two AhR antagonists, prevent HCB-induced STAT5b and ERK1/2 phosphorylation. HCB enhances cell migration evaluated by scratch motility and transwell assays. Pretreatment with PP2, AG1478, and 4,7-orthophenanthroline suppresses HCB-induced cell migration. These results demonstrate that HCB stimulates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways in MDA-MB-231. c-Src, HER1, and AhR are involved in HCB-induced increase in cell migration. The present study makes a significant contribution to the molecular mechanism of action of HCB in mammary carcinogenesis.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement/drug effects , Environmental Pollutants/toxicity , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Hexachlorobenzene/toxicity , Protein-Tyrosine Kinases/metabolism , STAT5 Transcription Factor/metabolism , Breast Neoplasms/chemically induced , Breast Neoplasms/pathology , CSK Tyrosine-Protein Kinase , Cell Culture Techniques , Cell Line, Tumor , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Female , Humans , Immunoprecipitation , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , src Homology Domains , src-Family Kinases
20.
Thyroid ; 20(9): 1003-13, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20825298

ABSTRACT

BACKGROUND: We have demonstrated that the administration of delta-iodolactone (i.e., 5-iodo-delta lactone) of arachidonic acid (IL-delta), a mediator in thyroid autoregulation, prevents goiter induction by methylmercaptoimidazol (MMI) in rats. Other studies have shown that transforming growth factor beta-1 (TGF-beta1) mimics some of the actions of excess iodide, but its participation in autoregulation is disputed. The present studies were performed to test the hypotheses that IL-delta decreases thyroid growth by inhibition of cell proliferation and/or by stimulation of apoptosis due to oxidative stress, that TGF-beta is stimulated by an excess of iodide and by IL-delta, and that c-Myc and c-Fos expression are upregulated during goiter induction and downregulated during goiter inhibition. METHODS: Rats were treated with MMI alone or together with iodide or IL-delta. Thyroid weight, cell number, cell proliferation, apoptosis, and oxidative stress were determined. Proliferating cell nuclear antigen (PCNA), TGF-beta1, TGF-beta3, c-Myc, and c-Fos were measured by Western blot. RESULTS: MMI caused a progressive increase in thyroid weight accompanied by an increase in cell number, asymmetry of the ploidy histograms, and PCNA, c-Fos, and c-Myc expression. In addition, an early increase of apoptosis was observed. Peroxides as well as glutathione peroxidase and catalase activities were also increased in goitrous animals. The inhibitory action of IL-delta on goiter formation was accompanied by the inhibition of cell proliferation evidenced by a significant decrease in cell number, PCNA expression, and asymmetry of the ploidy histograms. A transient stimulation of apoptosis after 7 days of treatment was also observed. MMI administration stimulated TGF-beta1 but not TGF-beta3 synthesis. IL-delta alone caused a slight increase of TGF-beta3 but not TGF-beta1, whereas potassium iodide (KI) stimulated both isoforms and MMI reversed KI effect on TGF-beta1 expression but not on TGF-beta3. CONCLUSIONS: The goiter inhibitory action of IL-delta is due to the inhibition of cell proliferation and the transient stimulation of apoptosis. This latter action does not involve oxidative stress. TGF-beta1 does not play a role in the autoregulatory pathway mediated by IL-delta. Iodide stimulates TGF-beta3 without the need of being organified. These results suggest that there may be more than one pathway involved in the autoregulatory mechanism.


Subject(s)
Arachidonic Acids/therapeutic use , Goiter/prevention & control , Animals , Apoptosis/drug effects , Catalase/analysis , Cell Proliferation/drug effects , Female , Glutathione Peroxidase/analysis , Goiter/chemically induced , Methimazole/toxicity , Oxidative Stress/drug effects , Peroxides/analysis , Proliferating Cell Nuclear Antigen/analysis , Proto-Oncogene Proteins c-fos/analysis , Proto-Oncogene Proteins c-myc/analysis , Rats , Rats, Wistar , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Transforming Growth Factor beta1/analysis , Transforming Growth Factor beta3/analysis
SELECTION OF CITATIONS
SEARCH DETAIL