Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Angiogenesis ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775849

ABSTRACT

Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here, we report the development and comprehensive characterisation of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. Further, the generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. Thus, we present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Moreover, owing to their phenotypic stability, cardiac specificity, and high angiogenic potential, the cells described within would also be well suited for cardiac tissue engineering applications.

3.
Nature ; 621(7980): 821-829, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586410

ABSTRACT

Endothelial cells line the blood and lymphatic vasculature, and act as an essential physical barrier, control nutrient transport, facilitate tissue immunosurveillance and coordinate angiogenesis and lymphangiogenesis1,2. In the intestine, dietary and microbial cues are particularly important in the regulation of organ homeostasis. However, whether enteric endothelial cells actively sense and integrate such signals is currently unknown. Here we show that the aryl hydrocarbon receptor (AHR) acts as a critical node for endothelial cell sensing of dietary metabolites in adult mice and human primary endothelial cells. We first established a comprehensive single-cell endothelial atlas of the mouse small intestine, uncovering the cellular complexity and functional heterogeneity of blood and lymphatic endothelial cells. Analyses of AHR-mediated responses at single-cell resolution identified tissue-protective transcriptional signatures and regulatory networks promoting cellular quiescence and vascular normalcy at steady state. Endothelial AHR deficiency in adult mice resulted in dysregulated inflammatory responses and the initiation of proliferative pathways. Furthermore, endothelial sensing of dietary AHR ligands was required for optimal protection against enteric infection. In human endothelial cells, AHR signalling promoted quiescence and restrained activation by inflammatory mediators. Together, our data provide a comprehensive dissection of the effect of environmental sensing across the spectrum of enteric endothelia, demonstrating that endothelial AHR signalling integrates dietary cues to maintain tissue homeostasis by promoting endothelial cell quiescence and vascular normalcy.


Subject(s)
Endothelial Cells , Receptors, Aryl Hydrocarbon , Humans , Animals , Mice , Receptors, Aryl Hydrocarbon/metabolism , Endothelial Cells/metabolism , Intestines , Signal Transduction , Homeostasis , Ligands
4.
Front Immunol ; 14: 1209490, 2023.
Article in English | MEDLINE | ID: mdl-37457690

ABSTRACT

Objectives: The disease-modifying anti-rheumatic drug methotrexate (MTX) is recognized to reduce cardiovascular risk in patients with systemic inflammatory diseases. However, the molecular basis for these cardioprotective effects remains incompletely understood. This study evaluated the actions of low-dose MTX on the vascular endothelium. Methods: Human endothelial cells (EC) were studied under in vitro conditions relevant to inflammatory arthritis. These included culture in a pro-inflammatory microenvironment and exposure to fluid shear stress (FSS) using a parallel plate model. Respectively treated cells were analyzed by RNA sequencing and quantitative real-time PCR for gene expression, by immunoblotting for protein expression, by phosphokinase activity arrays, by flow cytometry for cell cycle analyses and by mass spectrometry to assess folate metabolite levels. Results: In static conditions, MTX was efficiently taken up by EC and caused cell cycle arrest concurrent with modulation of cell signaling pathways. These responses were reversed by folinic acid (FA), suggesting that OCM is a predominant target of MTX. Under FSS, MTX did not affect cell proliferation or pro-inflammatory gene expression. Exposure to FSS downregulated endothelial one carbon metabolism (OCM) as evidenced by decreased expression of key OCM genes and metabolites. Conclusion: We found that FSS significantly downregulated OCM and thereby rendered EC less susceptible to the effects of MTX treatment. The impact of shear stress on OCM suggested that MTX does not directly modulate endothelial function. The cardioprotective actions of MTX likely reflect direct actions on inflammatory cells and indirect benefit on the vascular endothelium.


Subject(s)
Antirheumatic Agents , Methotrexate , Humans , Methotrexate/therapeutic use , Endothelial Cells , Antirheumatic Agents/adverse effects , Folic Acid , Carbon
5.
J Thromb Haemost ; 21(11): 3056-3066, 2023 11.
Article in English | MEDLINE | ID: mdl-37393001

ABSTRACT

The hemostatic system involves an array of circulating coagulation factors that work in concert with platelets and the vascular endothelium to promote clotting in a space- and time-defined manner. Despite equal systemic exposure to circulating factors, bleeding and thrombotic diseases tend to prefer specific sites, suggesting an important role for local factors. This may be provided by endothelial heterogeneity. Endothelial cells differ not only between arteries, veins, and capillaries but also between microvascular beds from different organs, which present unique organotypic morphology and functional and molecular profiles. Accordingly, regulators of hemostasis are not uniformly distributed in the vasculature. The establishment and maintenance of endothelial diversity are orchestrated at the transcriptional level. Recent transcriptomic and epigenomic studies have provided a global picture of endothelial cell heterogeneity. In this review, we discuss the organotypic differences in the hemostatic profile of endothelial cells; we focus on 2 major endothelial regulators of hemostasis, namely von Willebrand factor and thrombomodulin, to provide examples of transcriptional mechanisms that control heterogeneity; finally, we consider some of the methodological challenges and opportunities for future studies.


Subject(s)
Endothelial Cells , Hemostatics , Humans , Endothelial Cells/metabolism , Hemostasis/physiology , Endothelium, Vascular/metabolism , von Willebrand Factor/genetics , von Willebrand Factor/metabolism , Gene Expression
6.
J Mol Endocrinol ; 71(2)2023 08 01.
Article in English | MEDLINE | ID: mdl-37306684

ABSTRACT

Liver sinusoidal endothelial cells (LSECs) are highly specialised endothelial cells that form the liver microvasculature. LSECs maintain liver homeostasis, scavenging bloodborne molecules, regulating immune response, and actively promoting hepatic stellate cell quiescence. These diverse functions are underpinned by a suite of unique phenotypical attributes distinct from other blood vessels. In recent years, studies have begun to reveal the specific contributions of LSECs to liver metabolic homeostasis and how LSEC dysfunction associates with disease aetiology. This has been particularly evident in the context of non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, which is associated with the loss of key LSEC phenotypical characteristics and molecular identity. Comparative transcriptome studies of LSECs and other endothelial cells, together with rodent knockout models, have revealed that loss of LSEC identity through disruption of core transcription factor activity leads to impaired metabolic homeostasis and to hallmarks of liver disease. This review explores the current knowledge of LSEC transcription factors, covering their roles in LSEC development and maintenance of key phenotypic features, which, when disturbed, lead to loss of liver metabolic homeostasis and promote features of chronic liver diseases, such as non-alcoholic liver disease.


Subject(s)
Endothelial Cells , Non-alcoholic Fatty Liver Disease , Humans , Endothelial Cells/metabolism , Transcription Factors/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Homeostasis
7.
J Thromb Haemost ; 21(9): 2611-2619, 2023 09.
Article in English | MEDLINE | ID: mdl-37336438

ABSTRACT

BACKGROUND: Assessment of endothelial colony-forming cell (ECFC) number and vasculogenic properties is crucial for exploring vascular diseases and regeneration strategies. A previous survey of the Scientific and Standardization Committee on Vascular Biology of the International Society on Thrombosis and Haemostasis clarified key methodological points but highlighted a lack of standardization associated with ECFC culture. OBJECTIVES: The aim of this study was to provide expert consensus guidance on ECFC isolation and culture. METHODS: We surveyed 21 experts from 10 different countries using a questionnaire proposed during the 2019 International Society on Thrombosis and Haemostasis Congress in Melbourne (Australia) to attain a consensus on ECFC isolation and culture. RESULTS: We report here the consolidated results of the questionnaire. There was agreement on several general statements, mainly the technical aspects of ECFC isolation and cell culture. In contrast, on the points concerning the definition of a colony of ECFCs, the quantification of ECFCs, and the estimation of their age (in days or number of passages), the expert opinions were widely dispersed. CONCLUSION: Our survey clearly indicates an unmet need for rigorous standardization, multicenter comparison of results, and validation of ECFC isolation and culture procedures for clinical laboratory practice and robustness of results. To this end, we propose a standardized protocol for the isolation and expansion of ECFCs from umbilical cord and adult peripheral blood.


Subject(s)
Cell Culture Techniques , Endothelial Cells , Adult , Humans , Biology , Australia , Cells, Cultured , Neovascularization, Physiologic
8.
Arterioscler Thromb Vasc Biol ; 43(8): 1412-1428, 2023 08.
Article in English | MEDLINE | ID: mdl-37317853

ABSTRACT

BACKGROUND: During infectious diseases, proinflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung, the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG (erythroblast transformation-specific-related gene) as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. METHODS: Cytokine-dependent ubiquitination and proteasomal degradation of ERG were analyzed in cultured HUVECs (human umbilical vein ECs). Systemic administration of TNFα (tumor necrosis factor alpha) or the bacterial cell wall component lipopolysaccharide was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs (Ergfl/fl;Cdh5[PAC]-CreERT2), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. RESULTS: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or lipopolysaccharide resulted in a rapid and substantial degradation of ERG within lung ECs but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Ergfl/fl;Cdh5(PAC)-CreERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek-a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. CONCLUSIONS: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.


Subject(s)
Communicable Diseases , Transcription Factors , Humans , Mice , Animals , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Cytokines/metabolism , Communicable Diseases/metabolism , Cells, Cultured , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
9.
Sci Signal ; 16(786): eabo4863, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37220183

ABSTRACT

Linear and disturbed flow differentially regulate gene expression, with disturbed flow priming endothelial cells (ECs) for a proinflammatory, atheroprone expression profile and phenotype. Here, we investigated the role of the transmembrane protein neuropilin-1 (NRP1) in ECs exposed to flow using cultured ECs, mice with an endothelium-specific knockout of NRP1, and a mouse model of atherosclerosis. We demonstrated that NRP1 was a constituent of adherens junctions that interacted with VE-cadherin and promoted its association with p120 catenin, stabilizing adherens junctions and inducing cytoskeletal remodeling in alignment with the direction of flow. We also showed that NRP1 interacted with transforming growth factor-ß (TGF-ß) receptor II (TGFBR2) and reduced the plasma membrane localization of TGFBR2 and TGF-ß signaling. NRP1 knockdown increased the abundance of proinflammatory cytokines and adhesion molecules, resulting in increased leukocyte rolling and atherosclerotic plaque size. These findings describe a role for NRP1 in promoting endothelial function and reveal a mechanism by which NRP1 reduction in ECs may contribute to vascular disease by modulating adherens junction signaling and promoting TGF-ß signaling and inflammation.


Subject(s)
Endothelial Cells , Neuropilin-1 , Receptor, Transforming Growth Factor-beta Type II , Animals , Mice , Adherens Junctions , Endothelium , Cadherins
10.
J Thromb Haemost ; 21(7): 1802-1812, 2023 07.
Article in English | MEDLINE | ID: mdl-37011710

ABSTRACT

BACKGROUND: The von Willebrand factor (VWF) is a multimeric plasma glycoprotein essential for hemostasis, inflammation, and angiogenesis. The majority of VWF is synthesized by endothelial cells (ECs) and stored in Weibel-Palade bodies (WPB). Among the range of proteins shown to co-localize to WPB is angiopoietin-2 (Angpt-2), a ligand of the receptor tyrosine kinase Tie-2. We have previously shown that VWF itself regulates angiogenesis, raising the hypothesis that some of the angiogenic activity of VWF may be mediated by its interaction with Angpt-2. METHODS: Static-binding assays were used to probe the interaction between Angpt-2 and VWF. Binding in media from cultured human umbilical vein ECs s and in plasma was determined by immunoprecipitation experiments. Immunofluorescence was used to detect the presence of Angpt-2 on VWF strings, and flow assays were used to investigate the effect on VWF function. RESULTS: Static-binding assays revealed that Angpt-2 bound to VWF with high affinity (KD,app ∼3 nM) in a pH and calcium-dependent manner. The interaction was localized to the VWF A1 domain. Co-immunoprecipitation experiments demonstrated that the complex persisted following stimulated secretion from ECs and was present in plasma. Angpt-2 was also visible on VWF strings on stimulated ECs. The VWF-Angpt-2 complex did not inhibit the binding of Angpt-2 to Tie-2 and did not significantly interfere with VWF-platelet capture. CONCLUSIONS: Together, these data demonstrate a direct binding interaction between Angpt-2 and VWF that persists after secretion. VWF may act to localize Angpt-2; further work is required to establish the functional consequences of this interaction.


Subject(s)
Weibel-Palade Bodies , von Willebrand Factor , Humans , von Willebrand Factor/metabolism , Weibel-Palade Bodies/metabolism , Angiopoietin-2/metabolism , Exocytosis , Human Umbilical Vein Endothelial Cells/metabolism , Cells, Cultured
11.
J Travel Med ; 30(5)2023 09 05.
Article in English | MEDLINE | ID: mdl-36881665

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, the use of face masks has been recommended or enforced in several situations; however, their effects on physiological parameters and cognitive performance at high altitude are unknown. METHODS: Eight healthy participants (four females) rested and exercised (cycling, 1 W/kg) while wearing no mask, a surgical mask or a filtering facepiece class 2 respirator (FFP2), both in normoxia and hypobaric hypoxia corresponding to an altitude of 3000 m. Arterialised oxygen saturation (SaO2), partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2), heart and respiratory rate, pulse oximetry (SpO2), cerebral oxygenation, visual analogue scales for dyspnoea and mask's discomfort were systematically investigated. Resting cognitive performance and exercising tympanic temperature were also assessed. RESULTS: Mask use had a significant effect on PaCO2 (overall +1.2 ± 1.7 mmHg). There was no effect of mask use on all other investigated parameters except for dyspnoea and discomfort, which were highest with FFP2. Both masks were associated with a similar non-significant decrease in SaO2 during exercise in normoxia (-0.5 ± 0.4%) and, especially, in hypobaric hypoxia (-1.8 ± 1.5%), with similar trends for PaO2 and SpO2. CONCLUSIONS: Although mask use was associated with higher rates of dyspnoea, it had no clinically relevant impact on gas exchange at 3000 m at rest and during moderate exercise, and no detectable effect on resting cognitive performance. Wearing a surgical mask or an FFP2 can be considered safe for healthy people living, working or spending their leisure time in mountains, high-altitude cities or other hypobaric environments (e.g. aircrafts) up to an altitude of 3000 m.


Subject(s)
Altitude , COVID-19 , Female , Humans , Masks , COVID-19/epidemiology , Pandemics , Oxygen , Hypoxia , Dyspnea
12.
Expert Rev Hematol ; 16(sup1): 39-54, 2023 03.
Article in English | MEDLINE | ID: mdl-36920856

ABSTRACT

BACKGROUND: Excessive or abnormal mucocutaneous bleeding (MCB) may impact all aspects of the physical and psychosocial wellbeing of those who live with it (PWMCB). The evidence base for the optimal diagnosis and management of disorders such as inherited platelet disorders, hereditary hemorrhagic telangiectasia (HHT), hypermobility spectrum disorders (HSD), Ehlers-Danlos syndromes (EDS), and von Willebrand disease (VWD) remains thin with enormous potential for targeted research. RESEARCH DESIGN AND METHODS: National Hemophilia Foundation and American Thrombosis and Hemostasis Network initiated the development of a National Research Blueprint for Inherited Bleeding Disorders with extensive all-stakeholder consultations to identify the priorities of people with inherited bleeding disorders and those who care for them. They recruited multidisciplinary expert working groups (WG) to distill community-identified priorities into concrete research questions and score their feasibility, impact, and risk. RESULTS: WG2 detailed 38 high priority research questions concerning the biology of MCB, VWD, inherited qualitative platelet function defects, HDS/EDS, HHT, bleeding disorder of unknown cause, novel therapeutics, and aging. CONCLUSIONS: Improving our understanding of the basic biology of MCB, large cohort longitudinal natural history studies, collaboration, and creative approaches to novel therapeutics will be important in maximizing the benefit of future research for the entire MCB community.


More people experience mucocutaneous bleeding (MCB), affecting tissues like skin and gums, than have hemophilia A or B. MCB is not understood as well as hemophilia. Common types of MCB include nosebleeds, bleeding gums, heavy menstrual bleeding, and digestive tract bleeding. Mucocutaneous inherited bleeding disorders include inherited platelet disorders, hereditary hemorrhagic telangiectasia (HHT), hypermobility spectrum disorders (HSD) and Ehlers-Danlos syndromes (EDS), von Willebrand Disease (VWD), and others. Diagnosing and treating MCB is complicated and sometimes medical providers dismiss the bleeding that patients report when they cannot find a medical explanation for it. Many people with mucocutaneous bleeding (PWMCB) do not receive the care they need; for example, women with VWD live with symptoms for, on average, 16 years before they are diagnosed in the US. This struggle to obtain care has important negative impacts on patients' physical and psychological health and their quality-of-life. The National Hemophilia Foundation (NHF), a large US bleeding disorders patient advocacy organization, set out to develop a National Research Blueprint for Inherited Bleeding Disorders focused on community priorities. They brought together a group of patients, providers, and researchers with MCB expertise to identify the research that would most improve the lives of PWMCB through targeted and accessible diagnostics and therapies. We report in this paper that research is needed to better understand the biology of MCB and to define the mechanisms of disease in these disorders. We also describe high priority research questions for each of the main disorders, novel therapeutics, and aging.


Subject(s)
Blood Platelet Disorders , Hemophilia A , von Willebrand Diseases , Humans , von Willebrand Diseases/diagnosis , von Willebrand Diseases/genetics , von Willebrand Diseases/therapy , Blood Platelet Disorders/diagnosis , Blood Platelet Disorders/genetics , Blood Platelet Disorders/therapy , Research
13.
bioRxiv ; 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36798267

ABSTRACT

Background: During infectious diseases, pro-inflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. Methods: Cytokine-dependent ubiquitination and proteasomal degradation of ERG was analyzed in cultured Human Umbilical Vein ECs (HUVECs). Systemic administration of TNFα or the bacterial cell wall component lipopolysaccharide (LPS) was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs ( Erg fl/fl ;Cdh5(PAC)Cre ERT2 ), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. Results: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or LPS resulted in a rapid and substantial degradation of ERG within lung ECs, but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Erg fl/fl ;Cdh5(PAC)-Cre ERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek , a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. Conclusions: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.

14.
J Immunol ; 210(5): 537-546, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36637217

ABSTRACT

CD4+ TH cells develop into subsets that are specialized in the secretion of particular cytokines to mediate restricted types of inflammation and immune responses. Among the subsets that promote development of allergic inflammatory responses, IL-9-producing TH9 cells are regulated by a number of transcription factors. We have previously shown that the E26 transformation-specific (Ets) family members PU.1 and Ets translocation variant 5 (ETV5) function in parallel to regulate IL-9. In this study we identified a third member of the Ets family of transcription factors, Ets-related gene (ERG), that mediates IL-9 production in TH9 cells in the absence of PU.1 and ETV5. Chromatin immunoprecipitation assays revealed that ERG interaction at the Il9 promoter region is restricted to the TH9 lineage and is sustained during murine TH9 polarization. Knockdown or knockout of ERG during murine or human TH9 polarization in vitro led to a decrease in IL-9 production in TH9 cells. Deletion of ERG in vivo had modest effects on IL-9 production in vitro or in vivo. However, in the absence of PU.1 and ETV5, ERG was required for residual IL-9 production in vitro and for IL-9 production by lung-derived CD4 T cells in a mouse model of chronic allergic airway disease. Thus, ERG contributes to IL-9 regulation in TH9 cells.


Subject(s)
Alveolitis, Extrinsic Allergic , Asthma , Hypersensitivity , Pneumonia , Animals , Humans , Mice , CD4-Positive T-Lymphocytes , Cell Differentiation , Interleukin-9 , Pneumonia/metabolism , T-Lymphocytes, Helper-Inducer , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Regulator ERG/metabolism
15.
Cell Rep Methods ; 2(9): 100280, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36160044

ABSTRACT

In this study, we report static and perfused models of human myocardial-microvascular interaction. In static culture, we observe distinct regulation of electrophysiology of human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in co-culture with human cardiac microvascular endothelial cells (hCMVECs) and human left ventricular fibroblasts (hLVFBs), including modification of beating rate, action potential, calcium handling, and pro-arrhythmic substrate. Within a heart-on-a-chip model, we subject this three-dimensional (3D) co-culture to microfluidic perfusion and vasculogenic growth factors to induce spontaneous assembly of perfusable myocardial microvasculature. Live imaging of red blood cells within myocardial microvasculature reveals pulsatile flow generated by beating hiPSC-CMs. This study therefore demonstrates a functionally vascularized in vitro model of human myocardium with widespread potential applications in basic and translational research.


Subject(s)
Endothelial Cells , Induced Pluripotent Stem Cells , Humans , Myocardium , Myocytes, Cardiac , Coculture Techniques
16.
Development ; 149(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35723257

ABSTRACT

Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.


Subject(s)
Endothelial Cells , Transcription Factors , Animals , Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mice , Neovascularization, Physiologic/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitins/metabolism
17.
Thorax ; 77(6): 616-620, 2022 06.
Article in English | MEDLINE | ID: mdl-35027472

ABSTRACT

Cellular senescence contributes to the pathophysiology of chronic obstructive pulmonary disease (COPD) and cardiovascular disease. Using endothelial colony-forming-cells (ECFC), we have demonstrated accelerated senescence in smokers and patients with COPD compared with non-smokers. Subgroup analysis suggests that ECFC from patients with COPD on inhaled corticosteroids (ICS) (n=14; eight on ICS) exhibited significantly reduced senescence (Senescence-associated-beta galactosidase activity, p21CIP1), markers of DNA damage response (DDR) and IFN-γ-inducible-protein-10 compared with patients with COPD not on ICS. In vitro studies using human-umbilical-vein-endothelial-cells showed a protective effect of ICS on the DDR, senescence and apoptosis caused by oxidative stress, suggesting a protective molecular mechanism of action of corticosteroids on endothelium.


Subject(s)
Endothelial Progenitor Cells , Pulmonary Disease, Chronic Obstructive , Administration, Inhalation , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Cellular Senescence , Humans
18.
Nat Cardiovasc Res ; 1: 882-899, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36713285

ABSTRACT

Current dogma dictates that during adulthood, endothelial cells (ECs) are locked in an immutable stable homeostatic state. By contrast, herein we show that maintenance of EC fate and function are linked and active processes, which depend on the constitutive cooperativity of only two ETS-transcription factors (TFs) ERG and Fli1. While deletion of either Fli1 or ERG manifest subtle vascular dysfunction, their combined genetic deletion in adult EC results in acute vasculopathy and multiorgan failure, due to loss of EC fate and integrity, hyperinflammation, and spontaneous thrombosis, leading to death. ERG and Fli1 co-deficiency cause rapid transcriptional silencing of pan- and organotypic vascular core genes, with dysregulation of inflammation and coagulation pathways. Vascular hyperinflammation leads to impaired hematopoiesis with myeloid skewing. Accordingly, enforced ERG and FLI1 expression in adult human mesenchymal stromal cells activates vascular programs and functionality enabling engraftment of perfusable vascular network. GWAS-analysis identified vascular diseases are associated with FLI1/Erg mutations. Constitutive expression of ERG and Fli1 uphold EC fate, physiological function, and resilience in adult vasculature; while their functional loss can contribute to systemic human diseases.

19.
Angiogenesis ; 24(4): 755-788, 2021 11.
Article in English | MEDLINE | ID: mdl-34184164

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 ß [IL-1ß] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.


Subject(s)
COVID-19/metabolism , Myelopoiesis , Neovascularization, Pathologic/metabolism , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/metabolism , Thrombosis/metabolism , COVID-19/pathology , COVID-19/therapy , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Fibrin Fibrinogen Degradation Products/metabolism , Fibroblast Growth Factor 2/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Membrane Proteins/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/therapy , Neovascularization, Pathologic/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Thrombosis/pathology , Thrombosis/therapy , Thrombosis/virology , Vascular Endothelial Growth Factor A/metabolism , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...