Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 46354, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406176

ABSTRACT

Within-species variation in social structure has attracted interest recently because of the potential to explore phenotypic plasticity and, specifically, how demographic and ecological variation influence social structure. Populations of bottlenose dolphins (Tursiops spp.) vary in male alliance formation, from no alliances to simple pairs to, in Shark Bay, Western Australia, the most complex nested alliances known outside of humans. Examination of ecological contributions to this variation is complicated by differences among populations in other potentially explanatory traits, such as phylogenetic distance, as well as female reproductive schedules, sexual size dimorphism, and body size. Here, we report our discovery of systematic spatial variation in alliance structure, seasonal movements and access to mates within a single continuous social network in the Shark Bay population. Participation in male trios (versus pairs), the sizes of seasonal range shifts and consortship rates all decrease from north to south along the 50 km length of the study area. The southern habitat, characterised by shallow banks and channels, may be marginal relative to the open northern habitat. The discovery of variation in alliance behaviour along a spatial axis within a single population is unprecedented and demonstrates that alliance complexity has an ecological component.


Subject(s)
Dolphins , Ecosystem , Sexual Behavior, Animal , Social Behavior , Animals , Bottle-Nosed Dolphin , Ecology , Female , Male
2.
Proc Biol Sci ; 279(1740): 3083-90, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22456886

ABSTRACT

Terrestrial mammals with differentiated social relationships live in 'semi-closed groups' that occasionally accept new members emigrating from other groups. Bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia, exhibit a fission-fusion grouping pattern with strongly differentiated relationships, including nested male alliances. Previous studies failed to detect a group membership 'boundary', suggesting that the dolphins live in an open social network. However, two alternative hypotheses have not been excluded. The community defence model posits that the dolphins live in a large semi-closed 'chimpanzee-like' community defended by males and predicts that a dominant alliance(s) will range over the entire community range. The mating season defence model predicts that alliances will defend mating-season territories or sets of females. Here, both models are tested and rejected: no alliances ranged over the entire community range and alliances showed extensive overlap in mating season ranges and consorted females. The Shark Bay dolphins, therefore, present a combination of traits that is unique among mammals: complex male alliances in an open social network. The open social network of dolphins is linked to their relatively low costs of locomotion. This reveals a surprising and previously unrecognized convergence between adaptations reducing travel costs and complex intergroup-alliance relationships in dolphins, elephants and humans.


Subject(s)
Behavior, Animal , Bottle-Nosed Dolphin/physiology , Cooperative Behavior , Hierarchy, Social , Social Behavior , Animals , Female , Male , Sexual Behavior, Animal , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...