Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Gene Ther ; 30(10): 1330-1345, 2023 10.
Article in English | MEDLINE | ID: mdl-37420093

ABSTRACT

Therapy Induced Senescence (TIS) leads to sustained growth arrest of cancer cells. The associated cytostasis has been shown to be reversible and cells escaping senescence further enhance the aggressiveness of cancers. Chemicals specifically targeting senescent cells, so-called senolytics, constitute a promising avenue for improved cancer treatment in combination with targeted therapies. Understanding how cancer cells evade senescence is needed to optimise the clinical benefits of this therapeutic approach. Here we characterised the response of three different NRAS mutant melanoma cell lines to a combination of CDK4/6 and MEK inhibitors over 33 days. Transcriptomic data show that all cell lines trigger a senescence programme coupled with strong induction of interferons. Kinome profiling revealed the activation of Receptor Tyrosine Kinases (RTKs) and enriched downstream signaling of neurotrophin, ErbB and insulin pathways. Characterisation of the miRNA interactome associates miR-211-5p with resistant phenotypes. Finally, iCell-based integration of bulk and single-cell RNA-seq data identifies biological processes perturbed during senescence and predicts 90 new genes involved in its escape. Overall, our data associate insulin signaling with persistence of a senescent phenotype and suggest a new role for interferon gamma in senescence escape through the induction of EMT and the activation of ERK5 signaling.


Subject(s)
Insulins , Melanoma , Humans , Multiomics , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Insulins/therapeutic use , Cellular Senescence/genetics , Membrane Proteins/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/therapeutic use
2.
Cell Rep ; 42(7): 112696, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37379213

ABSTRACT

Treatment options for patients with NRAS-mutant melanoma are limited and lack an efficient targeted drug combination that significantly increases overall and progression-free survival. In addition, targeted therapy success is hampered by the inevitable emergence of drug resistance. A thorough understanding of the molecular processes driving cancer cells' escape mechanisms is crucial to tailor more efficient follow-up therapies. We performed single-cell RNA sequencing of NRAS-mutant melanoma treated with MEK1/2 plus CDK4/6 inhibitors to decipher transcriptional transitions during the development of drug resistance. Cell lines resuming full proliferation (FACs [fast-adapting cells]) and cells that became senescent (SACs [slow-adapting cells]) over prolonged treatment were identified. The early drug response was characterized by transitional states involving increased ion signaling, driven by upregulation of the ATP-gated ion channel P2RX7. P2RX7 activation was associated with improved therapy responses and, in combination with targeted drugs, could contribute to the delayed onset of acquired resistance in NRAS-mutant melanoma.


Subject(s)
Melanoma , Transcriptome , Humans , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Receptors, Purinergic P2X7/metabolism , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
3.
Cancer Treat Rev ; 99: 102238, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34098219

ABSTRACT

Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS. STATEMENT OF SIGNIFICANCE: An estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.


Subject(s)
GTP Phosphohydrolases/genetics , Melanoma/genetics , Melanoma/therapy , Membrane Proteins/genetics , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Combined Modality Therapy , Humans , Melanoma/enzymology , Mutation , Protein Kinase Inhibitors/administration & dosage , Randomized Controlled Trials as Topic , Skin Neoplasms/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...