Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Mol Diagn ; 26(6): 498-509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522837

ABSTRACT

Fragile X syndrome (FXS) is the most common heritable form of intellectual disability and is caused by CGG repeat expansions exceeding 200 (full mutation). Such expansions lead to hypermethylation and transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. As a consequence, little or no FMR1 protein (FMRP) is produced; absence of the protein, which normally is responsible for neuronal development and maintenance, causes the syndrome. Previous studies have demonstrated the causal relationship between FMRP levels and cognitive abilities in peripheral blood mononuclear cells (PBMCs) and dermal fibroblast cell lines of patients with FXS. However, it is arguable whether PBMCs or fibroblasts would be the preferred surrogate for measuring molecular markers, particularly FMRP, to represent the cognitive impairment, a core symptom of FXS. To address this concern, CGG repeats, methylation status, FMR1 mRNA, and FMRP levels were measured in both PBMCs and fibroblasts derived from 66 individuals. The findings indicated a strong association between FMR1 mRNA expression levels and CGG repeat numbers in PBMCs of premutation males after correcting for methylation status. Moreover, FMRP expression levels from both PBMCs and fibroblasts of male participants with a hypermethylated full mutation and with mosaicism demonstrated significant association between the intelligence quotient levels and FMRP levels, suggesting that PBMCs may be preferable for FXS clinical studies, because of their greater accessibility.


Subject(s)
DNA Methylation , Fibroblasts , Fragile X Mental Retardation Protein , Fragile X Syndrome , Leukocytes, Mononuclear , Mutation , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fibroblasts/metabolism , Leukocytes, Mononuclear/metabolism , Male , Fragile X Syndrome/genetics , Fragile X Syndrome/blood , Fragile X Syndrome/diagnosis , Female , Adult , RNA, Messenger/genetics , Adolescent , Trinucleotide Repeat Expansion/genetics , Young Adult , Intelligence/genetics , Middle Aged , Child
2.
Genes (Basel) ; 15(3)2024 03 03.
Article in English | MEDLINE | ID: mdl-38540390

ABSTRACT

Fragile X syndrome (FXS) is the leading inherited cause of intellectual disability (ID) and single gene cause of autism. Although most patients with FXS and the full mutation (FM) have complete methylation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene, some have mosaicism in methylation and/or CGG repeat size, and few have completely unmethylated FM alleles. Those with a complete lack of methylation are rare, with little literature about the cognitive and behavioral phenotypes of these individuals. A review of past literature was conducted regarding individuals with unmethylated and mosaic FMR1 FM. We report three patients with an unmethylated FM FMR1 alleles without any behavioral or cognitive deficits. This is an unusual presentation for men with FM as most patients with an unmethylated FM and no behavioral phenotypes do not receive fragile X DNA testing or a diagnosis of FXS. Our cases showed that mosaic males with unmethylated FMR1 FM alleles may lack behavioral phenotypes due to the presence of smaller alleles producing the FMR1 protein (FMRP). However, these individuals could be at a higher risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS) due to the increased expression of mRNA, similar to those who only have a premutation.


Subject(s)
Ataxia , Fragile X Syndrome , Tremor , Male , Humans , Fragile X Syndrome/genetics , Fragile X Syndrome/complications , DNA Methylation/genetics , Fragile X Mental Retardation Protein/genetics , Mutation
3.
Genes (Basel) ; 15(3)2024 03 13.
Article in English | MEDLINE | ID: mdl-38540415

ABSTRACT

Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion of a 5'-non-coding trinucleotide (CGG) element beyond 200 repeats (full mutation). To better understand the complex relationships among FMR1 allelotype, methylation status, mRNA expression, and FMR1 protein (FMRP) levels, FMRP was quantified in peripheral blood mononuclear cells for a large cohort of FXS (n = 154) and control (n = 139) individuals using time-resolved fluorescence resonance energy transfer. Considerable size and methylation mosaicism were observed among individuals with FXS, with FMRP detected only in the presence of such mosaicism. No sample with a minimum allele size greater than 273 CGG repeats had significant levels of FMRP. Additionally, an association was observed between FMR1 mRNA and FMRP levels in FXS samples, predominantly driven by those with the lowest FMRP values. This study underscores the complexity of FMR1 allelotypes and FMRP expression and prompts a reevaluation of FXS therapies aimed at reactivating large full mutation alleles that are likely not capable of producing sufficient FMRP to improve cognitive function.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Humans , Fragile X Syndrome/genetics , Trinucleotide Repeat Expansion/genetics , Leukocytes, Mononuclear/metabolism , Autism Spectrum Disorder/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Cells ; 12(24)2023 12 05.
Article in English | MEDLINE | ID: mdl-38132093

ABSTRACT

Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome (FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that sulforaphane, an antioxidant present in cruciferous vegetables, can enhance mitochondrial function and maintain redox balance in the dermal fibroblasts of individuals with FXTAS, potentially leading to improved cognitive function. In a 24-week open-label trial involving 15 adults aged 60-88 with FXTAS, 11 participants successfully completed the study, demonstrating the safety and tolerability of sulforaphane. Clinical outcomes and biomarkers were measured to elucidate the effects of sulforaphane. While there were nominal improvements in multiple clinical measures, they were not significantly different after correction for multiple comparisons. PBMC energetic measures showed that the level of citrate synthase was higher after sulforaphane treatment, resulting in lower ATP production. The ratio of complex I to complex II showed positive correlations with the MoCA and BDS scores. Several mitochondrial biomarkers showed increased activity and quantity and were correlated with clinical improvements.


Subject(s)
Leukocytes, Mononuclear , Tremor , Adult , Male , Female , Humans , Tremor/drug therapy , Tremor/genetics , Tremor/complications , Fragile X Mental Retardation Protein/genetics , Ataxia/drug therapy , Ataxia/genetics , Biomarkers
5.
Int J Dev Neurosci ; 83(8): 715-727, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37724826

ABSTRACT

This study aimed to determine the association between severity of autism spectrum disorder (ASD) and cognitive, behavioral, and molecular measures in individuals with fragile X syndrome (FXS). Study inclusion criteria included individuals with FXS and (1) age 6-40 years, (2) full-scale IQ < 84, and (3) language ≥3-word phrases. ASD symptom severity was determined by Autism Diagnostic Observation Schedule-2 (ADOS-2). Other measures identified non-verbal IQ, adaptive skills, and aberrant behaviors. Molecular measures included blood FMR1 and CYFIP1 mRNA levels, FMRP and MMP9 levels. Analysis of variance (ANOVA) and Spearman's correlations were used to compare ASD severity groups. Data from 54 individuals was included with no/mild (N = 7), moderate (N = 18), and severe (N = 29) ASD. Individuals with high ASD severity had lower adaptive behavior scores (47.48 ± 17.49) than the no/mild group (69.00 ± 20.45, p = 0.0366); they also had more challenging behaviors, lethargy, and stereotypic behaviors. CYFIP1 mRNA expression levels positively correlated with the ADOS-2 comparison score(r2  = 0.33, p = 0.0349), with no significant correlations with other molecular markers. In conclusion, autism symptom severity is associated with more adverse cognitive and adaptive skills and specific behaviors in FXS, whereas CYFIP1 mRNA expression levels may be a potential biomarker for severity of ASD in FXS.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Humans , Child , Adolescent , Young Adult , Adult , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology , Autistic Disorder/genetics , RNA, Messenger , Cognition , Fragile X Mental Retardation Protein
6.
Cells ; 12(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37508583

ABSTRACT

This study contributes to a greater understanding of the utility of molecular biomarkers to identify clinical phenotypes of fragile X syndrome (FXS). Correlations of baseline clinical trial data (molecular measures-FMR1 mRNA, CYFIP1 mRNA, MMP9 and FMRP protein expression levels, nonverbal IQ, body mass index and weight, language level, NIH Toolbox, adaptive behavior rating, autism, and other mental health correlates) of 59 participants with FXS ages of 6-32 years are reported. FMR1 mRNA expression levels correlated positively with adaptive functioning levels, expressive language, and specific NIH Toolbox measures. The findings of a positive correlation of MMP-9 levels with obesity, CYFIP1 mRNA with mood and autistic symptoms, and FMR1 mRNA expression level with better cognitive, language, and adaptive functions indicate potential biomarkers for specific FXS phenotypes. These may be potential markers for future clinical trials for targeted treatments of FXS.


Subject(s)
Fragile X Syndrome , Humans , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Phenotype , Biomarkers , RNA, Messenger/metabolism
8.
Front Mol Biosci ; 7: 600840, 2020.
Article in English | MEDLINE | ID: mdl-33585555

ABSTRACT

Background: Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder associated with premutation CGG-repeat expansions (55-200 repeats) in the 5' non-coding portion of the fragile X mental retardation 1 (FMR1) gene. Core features of FXTAS include progressive tremor/ataxia, cognitive decline, variable brain volume loss, and white matter disease. The principal histopathological feature of FXTAS is the presence of central nervous system (CNS) and non-CNS intranuclear inclusions. Objective: To further elucidate the molecular underpinnings of FXTAS through the proteomic characterization of human FXTAS cortexes. Results: Proteomic analysis of FXTAS brain cortical tissue (n = 8) identified minor differences in protein abundance compared to control brains (n = 6). Significant differences in FXTAS relative to control brain predominantly involved decreased abundance of proteins, with the greatest decreases observed for tenascin-C (TNC), cluster of differentiation 38 (CD38), and phosphoserine aminotransferase 1 (PSAT1); proteins typically increased in other neurodegenerative diseases. Proteins with the greatest increased abundance include potentially novel neurodegeneration-related proteins and small ubiquitin-like modifier 1/2 (SUMO1/2). The FMRpolyG peptide, proposed in models of FXTAS pathogenesis but only identified in trace amounts in the earlier study of FXTAS inclusions, was not identified in any of the FXTAS or control brains in the current study. Discussion: The observed proteomic shifts, while generally relatively modest, do show a bias toward decreased protein abundance with FXTAS. Such shifts in protein abundance also suggest altered RNA binding as well as loss of cell-cell adhesion/structural integrity. Unlike other neurodegenerative diseases, the proteome of end-stage FXTAS does not suggest a strong inflammation-mediated degenerative response.

9.
Acta Neuropathol Commun ; 7(1): 143, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31481131

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation repeat expansion (55-200 CGG repeats) in the 5' noncoding region of the FMR1 gene. Solitary intranuclear inclusions within FXTAS neurons and astrocytes constitute a hallmark of the disorder, yet our understanding of how and why these bodies form is limited. Here, we have discovered that FXTAS inclusions emit a distinct autofluorescence spectrum, which forms the basis of a novel, unbiased method for isolating FXTAS inclusions by preparative fluorescence-activated cell sorting (FACS). Using a combination of autofluorescence-based FACS and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based proteomics, we have identified more than two hundred proteins that are enriched within the inclusions relative to FXTAS whole nuclei. Whereas no single protein species dominates inclusion composition, highly enriched levels of conjugated small ubiquitin-related modifier 2 (SUMO 2) protein and p62/sequestosome-1 (p62/SQSTM1) protein were found within the inclusions. Many additional proteins involved with RNA binding, protein turnover, and DNA damage repair were enriched within inclusions relative to total nuclear protein. The current analysis has also allowed the first direct detection, through peptide sequencing, of endogenous FMRpolyG peptide, the product of repeat-associated non-ATG (RAN) translation of the FMR1 mRNA. However, this peptide was found only at extremely low levels and not within whole FXTAS nuclear preparations, raising the question whether endogenous RAN products exist at quantities sufficient to contribute to FXTAS pathogenesis. The abundance of the inclusion-associated ubiquitin- and SUMO-based modifiers supports a model for inclusion formation as the result of increased protein loads and elevated oxidative stress leading to maladaptive autophagy. These results highlight the need to further investigate FXTAS pathogenesis in the context of endogenous systems.


Subject(s)
Ataxia/genetics , Ataxia/pathology , Fragile X Syndrome/genetics , Fragile X Syndrome/pathology , Frontal Lobe/pathology , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Tremor/genetics , Tremor/pathology , Amino Acid Sequence , Ataxia/metabolism , Female , Flow Cytometry/methods , Fragile X Syndrome/metabolism , Frontal Lobe/metabolism , Humans , Intranuclear Inclusion Bodies/metabolism , Male , Proteomics/methods , Tremor/metabolism
10.
PLoS One ; 14(12): e0226811, 2019.
Article in English | MEDLINE | ID: mdl-31891607

ABSTRACT

Fragile X syndrome, the leading heritable form of intellectual disability, is caused by hypermethylation and transcriptional silencing of large (CGG) repeat expansions (> 200 repeats) in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. As a consequence of FMR1 gene silencing, there is little or no production of FMR1 protein (FMRP), an important element in normal synaptic function. Although the absence of FMRP has long been known to be responsible for the cognitive impairment in fragile X syndrome, the relationship between FMRP level and cognitive ability (IQ) is only imprecisely understood. To address this issue, a high-throughput, fluorescence resonance energy transfer (FRET) assay has been used to quantify FMRP levels in dermal fibroblasts, and the relationship between FMRP and IQ measures was assessed by statistical analysis in a cohort of 184 individuals with CGG-repeat lengths spanning normal (< 45 CGGs) to full mutation (> 200 CGGs) repeat ranges in fibroblasts. The principal findings of the current study are twofold: i) For those with normal CGG repeats, IQ is no longer sensitive to further increases in FMRP above an FMRP threshold of ~70% of the mean FMRP level; below this threshold, IQ decreases steeply with further decreases in FMRP; and ii) For the current cohort, a mean IQ of 85 (lower bound for the normal IQ range) is attained for FMRP levels that are only ~35% of the mean FMRP level among normal CGG-repeat controls. The current results should help guide expectations for efforts to induce FMR1 gene activity and for the levels of cognitive function expected for a given range of FMRP levels.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Intelligence/genetics , Trinucleotide Repeat Expansion/genetics , Adolescent , Adult , Aged , Child , Cognition , Cohort Studies , Female , Fibroblasts , Gene Silencing , Humans , Male , Middle Aged , Wechsler Scales , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...