Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 40(4): 1098-1122, 2021 04.
Article in English | MEDLINE | ID: mdl-33270248

ABSTRACT

Assessment of ecological risks of chemicals in the field usually involves complex mixtures of known and unknown compounds. We describe the use of pathway-based chemical and biological approaches to assess the risk of chemical mixtures in the Maumee River (OH, USA), which receives a variety of agricultural and urban inputs. Fathead minnows (Pimephales promelas) were deployed in cages for 4 d at a gradient of sites along the river and adjoining tributaries in 2012 and during 2 periods (April and June) in 2016, in conjunction with an automated system to collect composite water samples. More than 100 industrial chemicals, pharmaceuticals, and pesticides were detected in water at some of the study sites, with the greatest number typically found near domestic wastewater treatment plants. In 2016, there was an increase in concentrations of several herbicides from April to June at upstream agricultural sites. A comparison of chemical concentrations in site water with single chemical data from vitro high-throughput screening (HTS) assays suggested the potential for perturbation of multiple biological pathways, including several associated with induction or inhibition of different cytochrome P450 (CYP) isozymes. This was consistent with direct effects of water extracts in an HTS assay and induction of hepatic CYPs in caged fish. Targeted in vitro assays and measurements in the caged fish suggested minimal effects on endocrine function (e.g., estrogenicity). A nontargeted mass spectroscopy-based analysis suggested that hepatic endogenous metabolite profiles in caged fish covaried strongly with the occurrence of pesticides and pesticide degradates. These studies demonstrate the application of an integrated suite of measurements to help understand the effects of complex chemical mixtures in the field. Environ Toxicol Chem 2021;40:1098-1122. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Subject(s)
Cyprinidae , Water Pollutants, Chemical , Animals , Complex Mixtures , Environmental Monitoring , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Aquat Toxicol ; 169: 19-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26485527

ABSTRACT

Early-life stage fish can be more sensitive to toxicants than adults, so delineating mechanisms of perturbation of biological pathways by chemicals during this life stage is crucial. Whole-mount in situ hybridization (WISH) paired with quantitative real-time polymerase chain reaction (QPCR) assays can enhance pathway-based analyses through determination of specific tissues where changes in gene expression are occurring. While WISH has frequently been used in zebrafish (Danio rerio), this technology has not previously been applied to fathead minnows (Pimephales promelas), another well-established small fish model species. The objective of the present study was to adapt WISH to fathead minnow embryos and larvae, and use the approach to evaluate the effects of estrone, an environmentally-relevant estrogen receptor (ER) agonist. Embryos were exposed via the water to 0, 18 or 1800 ng estrone/L (0, 0.067 and 6.7nM) for 3 or 6 days in a solvent-free, flow-through test system. Relative transcript abundance of three estrogen-responsive genes, estrogen receptor-α (esr1), cytochrome P450-aromatase B (cyp19b), and vitellogenin (vtg) was examined in pooled whole embryos using QPCR, and the spatial distribution of up-regulated gene transcripts was examined in individual fish using WISH. After 3 days of exposure to 1800 ng estrone/L, esr1 and cyp19b were significantly up-regulated, while vtg mRNA expression was not affected. After 6 days of exposure to 1800 ng estrone/L, transcripts for all three genes were significantly up-regulated. Corresponding WISH assays revealed spatial distribution of esr1 and vtg in the liver region, an observation consistent with activation of the hepatic ER. This study clearly demonstrates the potential utility of WISH, in conjunction with QPCR, to examine the mechanistic basis of the effects of toxicants on early-life stage fathead minnows.


Subject(s)
Cyprinidae/embryology , Embryo, Nonmammalian/drug effects , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Animals , Aromatase/genetics , Aromatase/metabolism , Biological Assay , Embryo, Nonmammalian/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/genetics , Estrogens/metabolism , In Situ Hybridization , Larva , Liver/drug effects , Liver/embryology , Liver/metabolism , Real-Time Polymerase Chain Reaction , Up-Regulation , Vitellogenins/genetics , Vitellogenins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...