Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(9): eadd2671, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36867706

ABSTRACT

Gene expression is changed by disease, but how these molecular responses arise and contribute to pathophysiology remains less understood. We discover that ß-amyloid, a trigger of Alzheimer's disease (AD), promotes the formation of pathological CREB3L2-ATF4 transcription factor heterodimers in neurons. Through a multilevel approach based on AD datasets and a novel chemogenetic method that resolves the genomic binding profile of dimeric transcription factors (ChIPmera), we find that CREB3L2-ATF4 activates a transcription network that interacts with roughly half of the genes differentially expressed in AD, including subsets associated with ß-amyloid and tau neuropathologies. CREB3L2-ATF4 activation drives tau hyperphosphorylation and secretion in neurons, in addition to misregulating the retromer, an endosomal complex linked to AD pathogenesis. We further provide evidence for increased heterodimer signaling in AD brain and identify dovitinib as a candidate molecule for normalizing ß-amyloid-mediated transcriptional responses. The findings overall reveal differential transcription factor dimerization as a mechanism linking disease stimuli to the development of pathogenic cellular states.


Subject(s)
Alzheimer Disease , Humans , Dimerization , Cyclic AMP Response Element-Binding Protein , Amyloid beta-Peptides , Gene Expression , Activating Transcription Factor 4 , Basic-Leucine Zipper Transcription Factors
2.
Neuron ; 105(5): 813-821.e6, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31899071

ABSTRACT

Despite being an autosomal dominant disorder caused by a known coding mutation in the gene HTT, Huntington's disease (HD) patients with similar trinucleotide repeat mutations can have an age of onset that varies by decades. One likely contributing factor is the genetic heterogeneity of patients that might modify their vulnerability to disease. We report that although the heterozygous depletion of the autophagy adaptor protein Alfy/Wdfy3 has no consequence in control mice, it significantly accelerates age of onset and progression of HD pathogenesis. Alfy is required in the adult brain for the autophagy-dependent clearance of proteinaceous deposits, and its depletion in mice and neurons derived from patient fibroblasts accelerates the aberrant accumulation of this pathological hallmark shared across adult-onset neurodegenerative diseases. These findings indicate that selectively compromising the ability to eliminate aggregated proteins is a pathogenic driver, and the selective elimination of aggregates may confer disease resistance.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autophagy-Related Proteins/genetics , Huntington Disease/genetics , Macroautophagy/genetics , Neurons/metabolism , Protein Aggregation, Pathological/genetics , Age of Onset , Animals , Cell Death/genetics , Disease Models, Animal , Female , Fibroblasts , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/physiopathology , Male , Mice , Mice, Knockout , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/physiopathology
3.
Neuron ; 104(5): 931-946.e5, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31606248

ABSTRACT

Localized protein synthesis is fundamental for neuronal development, maintenance, and function. Transcriptomes in axons and soma are distinct, but the mechanisms governing the composition of axonal transcriptomes and their developmental regulation are only partially understood. We found that the binding motif for the RNA-binding proteins Pumilio 1 and 2 (Pum1 and Pum2) is underrepresented in transcriptomes of developing axons. Introduction of Pumilio-binding elements (PBEs) into mRNAs containing a ß-actin zipcode prevented axonal localization and translation. Pum2 is restricted to the soma of developing neurons, and Pum2 knockdown or blocking its binding to mRNA caused the appearance and translation of PBE-containing mRNAs in axons. Pum2-deficient neurons exhibited axonal growth and branching defects in vivo and impaired axon regeneration in vitro. These results reveal that Pum2 shapes axonal transcriptomes by preventing the transport of PBE-containing mRNAs into axons, and they identify somatic mRNAs retention as a mechanism for the temporal control of intra-axonal protein synthesis.


Subject(s)
Axons/metabolism , Cell Body/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Transcriptome/physiology , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Neurogenesis/physiology , Protein Biosynthesis/physiology , Rats , Rats, Sprague-Dawley
4.
EMBO Rep ; 19(7)2018 07.
Article in English | MEDLINE | ID: mdl-29759981

ABSTRACT

Neurons frequently encounter neurodegenerative signals first in their periphery. For example, exposure of axons to oligomeric Aß1-42 is sufficient to induce changes in the neuronal cell body that ultimately lead to degeneration. Currently, it is unclear how the information about the neurodegenerative insult is transmitted to the soma. Here, we find that the translation of pre-localized but normally silenced sentinel mRNAs in axons is induced within minutes of Aß1-42 addition in a Ca2+-dependent manner. This immediate protein synthesis following Aß1-42 exposure generates a retrograde signaling complex including vimentin. Inhibition of the immediate protein synthesis, knock-down of axonal vimentin synthesis, or inhibition of dynein-dependent transport to the soma prevented the normal cell body response to Aß1-42 These results establish that CNS axons react to neurodegenerative insults via the local translation of sentinel mRNAs encoding components of a retrograde signaling complex that transmit the information about the event to the neuronal soma.


Subject(s)
Amyloid beta-Peptides/genetics , Nerve Degeneration/genetics , Neurons/metabolism , Peptide Fragments/genetics , RNA, Messenger/genetics , Animals , Axons/metabolism , Axons/pathology , Central Nervous System/metabolism , Dyneins/genetics , Mice , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neurons/pathology , Rats , Signal Transduction , Transcriptome/genetics , Vimentin/genetics , Xenopus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...