Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
Antimicrob Agents Chemother ; 68(9): e0045824, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39105584

ABSTRACT

Antiretroviral therapy has substantially reduced morbidity, mortality, and disease transmission in people living with HIV. Islatravir is a nucleoside reverse transcriptase translocation inhibitor that inhibits HIV-1 replication by multiple mechanisms of action, and it is in development for the treatment of HIV-1 infection. In preclinical and clinical studies, islatravir had a long half-life (t½) of 3.0 and 8.7 days (72 and 209 hours, respectively); therefore, islatravir is being investigated as a long-acting oral antiretroviral agent. A study was conducted to definitively elucidate the terminal t½ of islatravir and its active form islatravir-triphosphate (islatravir-TP). A single-site, open-label, non-randomized, single-dose phase 1 study was performed to evaluate the pharmacokinetics and safety of islatravir in plasma and the pharmacokinetics of islatravir-TP in peripheral blood mononuclear cells after administration of a single oral dose of islatravir 30 mg. Eligible participants were healthy adult males without HIV infection between the ages of 18 and 65 years. Fourteen participants were enrolled. The median time to maximum plasma islatravir concentration was 1 hour. Plasma islatravir concentrations decreased in a biphasic manner, with a t½ of 73 hours. The t½ (percentage geometric coefficient of variation) of islatravir-TP in peripheral blood mononuclear cells through 6 weeks (~1008 hours) after dosing was 8.1 days or 195 hours (25.6%). Islatravir was generally well tolerated with no drug-related adverse events observed. Islatravir-TP has a long intracellular t½, supporting further clinical investigation of islatravir administered at an extended dosing interval.


Subject(s)
Anti-HIV Agents , Leukocytes, Mononuclear , Humans , Male , Adult , Half-Life , Middle Aged , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/administration & dosage , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Young Adult , Deoxyadenosines/pharmacokinetics , Deoxyadenosines/administration & dosage , Deoxyadenosines/therapeutic use , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/therapeutic use , Reverse Transcriptase Inhibitors/administration & dosage , Adolescent , HIV-1/drug effects , HIV Infections/drug therapy , Aged , Drug Administration Schedule , Polyphosphates
2.
Inorg Chem ; 63(32): 14905-14912, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39059019

ABSTRACT

Copper(I) bis-diimine complexes have played important roles in light-activated processes that can lead to their potential applications in photocatalysis and chemical sensing. Their metal-to-ligand charge-transfer (MLCT) excited-state properties are tunable by various structural factors. Dimeric Cu(I) complexes with connecting diimine derivative ligands offer another structural tuning platform for the excited-state properties. Here, we investigate excited-state properties in two covalently connected dimeric Cu(I)'s with varying structural constraints exerted by the number of carbons in the polyethylene bridge (C0 and C4) connecting the two copper(I) diimine moieties. An interesting feature of Cu(I) diimine complexes is their ability to flatten following a photoinduced structural change. Herein, we observe larger structural constraints and more structural rearrangement required upon excitation of the longer bridged complex C4 to achieve a conformation toward a more flattened tetrahedral coordination geometry compared to the shorter bridged C0. Vibrational wavepacket analysis of these complexes further supports the effect of these structural constraints where we observe a more rapid dephasing of the C0 complex, as opposed to the C4 complex, despite similar normal mode vibrations. The experimental results were supplemented by TDDFT calculations. The studies provide insight into using metal-metal interactions through constraints to tune excited-state dynamics and pathways.

3.
Antimicrob Agents Chemother ; 68(8): e0046424, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38953364

ABSTRACT

Islatravir is a deoxynucleoside analog being developed for the treatment of HIV-1 infection. Clinical studies are being conducted to evaluate islatravir, administered in combination with other antiretroviral therapies, at doses of 0.25 mg once daily and 2 mg once weekly. In multiple previous clinical studies, islatravir was generally well tolerated, with no clear trend in cardiac adverse events. A trial was conducted to evaluate the effect of islatravir on cardiac repolarization. A randomized, double-blind, active- and placebo-controlled phase 1 trial was conducted, in which a single dose of islatravir 0.75 mg, islatravir 240 mg (supratherapeutic dose), moxifloxacin 400 mg (active control), or placebo was administered. Continuous 12-lead electrocardiogram monitoring was performed before dosing through 24 hours after dosing. QT interval measurements were collected, and safety and pharmacokinetics were evaluated. Sixty-three participants were enrolled, and 59 completed the study. Fridericia's QT correction for heart rate was inadequate; therefore, a population-specific correction was applied (QTcP). The placebo-corrected change from baseline in QTcP (ΔΔQTcP) interval at the observed geometric mean maximum plasma concentration associated with islatravir 0.75 mg and islatravir 240 mg was <10 ms at all time points. Assay sensitivity was confirmed because the use of moxifloxacin 400 mg led to a ΔΔQTcP >10 ms. The pharmacokinetic profile of islatravir was consistent with that of previous studies, and islatravir was generally well tolerated. Results from the current trial suggest that single doses of islatravir as high as 240 mg do not lead to QTc interval prolongation.


Subject(s)
Electrocardiography , Fluoroquinolones , Moxifloxacin , Humans , Adult , Male , Electrocardiography/drug effects , Double-Blind Method , Female , Middle Aged , Fluoroquinolones/adverse effects , Fluoroquinolones/pharmacokinetics , Moxifloxacin/adverse effects , Moxifloxacin/pharmacokinetics , Heart Rate/drug effects , Long QT Syndrome/chemically induced , Young Adult , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/adverse effects , Anti-HIV Agents/therapeutic use , Aza Compounds/adverse effects , Aza Compounds/pharmacokinetics , Deoxyadenosines
4.
Circ Cardiovasc Imaging ; 17(2): e015496, 2024 02.
Article in English | MEDLINE | ID: mdl-38377236

ABSTRACT

Achieving optimal cardiovascular health in rural populations can be challenging for several reasons including decreased access to care with limited availability of imaging modalities, specialist physicians, and other important health care team members. Therefore, innovative solutions are needed to optimize health care and address cardiovascular health disparities in rural areas. Mobile examination units can bring imaging technology to underserved or remote communities with limited access to health care services. Mobile examination units can be equipped with a wide array of assessment tools and multiple imaging modalities such as computed tomography scanning and echocardiography. The detailed structural assessment of cardiovascular and lung pathology, as well as the detection of extracardiac pathology afforded by computed tomography imaging combined with the functional and hemodynamic assessments acquired by echocardiography, yield deep phenotyping of heart and lung disease for populations historically underrepresented in epidemiological studies. Moreover, by bringing the mobile examination unit to local communities, innovative approaches are now possible including engagement with local professionals to perform these imaging assessments, thereby augmenting local expertise and experience. However, several challenges exist before mobile examination unit-based examinations can be effectively integrated into the rural health care setting including standardizing acquisition protocols, maintaining consistent image quality, and addressing ethical and privacy considerations. Herein, we discuss the potential importance of cardiac multimodality imaging to improve cardiovascular health in rural regions, outline the emerging experience in this field, highlight important current challenges, and offer solutions based on our experience in the RURAL (Risk Underlying Rural Areas Longitudinal) cohort study.


Subject(s)
Multimodal Imaging , Rural Population , Humans , Longitudinal Studies , Cohort Studies
5.
Inorg Chem ; 62(39): 15927-15935, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37733276

ABSTRACT

Two new complexes, [Ru(tpy)(qdppz)](PF6)2 (1; qdppz = 2-(quinolin-8-yl)dipyrido[3,2-a:2',3'-c]phenazine, tpy = 2,2':6',2″-terpyridine) and [Ru(qdppz)2](PF6)2 (2), were investigated for their potential use as phototherapeutic agents through their ability to photosensitize the production of singlet oxygen, 1O2, upon irradiation with visible light. The complexes exhibit strong Ru(dπ) → qdppz(π*) metal-to-ligand charge transfer (MLCT) absorption with maxima at 485 and 495 nm for 1 and 2 in acetone, respectively, red-shifted from the Ru(dπ) → tpy(π*) absorption at 470 nm observed for [Ru(tpy)2]2+ (3) in the same solvent. Complexes 1 and 3 are not luminescent at room temperature, but 3MLCT emission is observed for 2 with maximum at 690 nm (λexc = 480 nm) in acetone. The lifetimes of the 3MLCT states of 1 and 2 were measured using transient absorption spectroscopy to be ∼9 and 310 ns in methanol, respectively, at room temperature (λexc = 490 nm). The bite angle of the qdppz ligand is closer to octahedral geometry than that of tpy, resulting in the longer lifetime of 2 as compared to those of 1 and 3. Arrhenius treatment of the temperature dependence of the luminescence results in similar activation energies, Ea, from the 3MLCT to the 3LF (ligand-field) state for the two complexes, 2520 cm-1 in 1 and 2400 cm-1 in 2. However, the pre-exponential factors differ by approximately two orders of magnitude, 2.3 × 1013 s-1 for 1 and 1.4 × 1011 s-1 for 2, which, together with differences in the Huang-Rhys factors, lead to markedly different 3MLCT lifetimes. Although both 1 and 2 intercalate between the DNA bases, only 2 is able to photocleave DNA owing to its 1O2 production upon irradiation with ΦΔ = 0.69. The present work highlights the profound effect of the ligand bite angle on the electronic structure, providing guidelines for extending the lifetime of 3MLCT Ru(II) complexes with tridentate ligands, a desired property for a number of applications.

6.
Clin Pharmacol Ther ; 114(3): 569-577, 2023 09.
Article in English | MEDLINE | ID: mdl-37309988

ABSTRACT

Cell and gene therapy (CGT) describes a broad category of medicinal products with potential applications to prevent and treat human disease in multiple therapeutic areas. These therapies leverage the use of modified nucleic acids, altered cells or tissue, or both. The modality, mechanism, route of administration, and therapeutic indication for a CGT product will influence the challenges and opportunities for early clinical development, some of which may be highly specific to the product under consideration. Both the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) encourage early interaction between sponsor and health authority to align on key elements of the CGT development program.


Subject(s)
Cell- and Tissue-Based Therapy , Genetic Therapy , United States , Humans , United States Food and Drug Administration
7.
Photochem Photobiol Sci ; 22(2): 333-344, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36342639

ABSTRACT

Photodestruction of 2-(pyrazin-2'-yl)-1H-indole and 2,5-di(1H-indol-2'-yl)pyrazine involves singlet oxygen generation and its rapid insertion into the indole ring with the formation of benzoxazinone derivatives: 2-(pyrazin-2-yl)-4H-3,1-benzoxazin-4-one and 2-[5-(1H-indol-2-yl)pyrazin-2-yl]-4H-3,1-benzoxazin-4-one. The quantum yield of this reaction strongly depends on the environment. It is definitely smaller in protic methanol than in aprotic acetonitrile or n-hexane. The observed effect of photostabilization is explained by formation of hydrogen bonded complexes between the chromophore and alcohol, which results in lower triplet formation efficiency and, in consequence, decrease of singlet oxygen formation quantum yield.


Subject(s)
Methanol , Singlet Oxygen , Solvents/chemistry , Ethanol , Indoles/chemistry
8.
J Acquir Immune Defic Syndr ; 92(4): 310-316, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36450129

ABSTRACT

BACKGROUND: Islatravir (MK-8591) is a deoxyadenosine analog in development for the treatment and prevention of HIV-1 infection. An islatravir-eluting implant could provide an additional option for pre-exposure prophylaxis (PrEP). SETTING: Previous data support a threshold islatravir triphosphate concentration for PrEP of 0.05 pmol/10 6 cells in peripheral blood mononuclear cells. Prototype islatravir-eluting implants were previously studied to establish general tolerability and pharmacokinetics (PKs) of islatravir relative to the threshold level. METHODS: In this randomized, double-blind, placebo-controlled, phase 1 trial, a next-generation radiopaque islatravir-eluting implant (48 mg, 52 mg, or 56 mg) or placebo implant was placed for a duration of 12 weeks in participants at low risk of HIV infection. Safety and tolerability, as well as PK for islatravir parent and islatravir triphosphate from plasma and peripheral blood mononuclear cells, were assessed throughout placement and 8 weeks after removal. RESULTS: In total, 36 participants (8 active and 4 placebo per dose arm) were enrolled and completed this study. Implants were generally well tolerated, with no discontinuations due to an adverse event, and no clear dose-dependence in implant-related adverse events. No clinically meaningful relationships were observed for changes in laboratory values, vital signs, or electrocardiogram assessments. Mean islatravir triphosphate levels at day 85 (0.101-0.561 pmol/10 6  cells) were above the PK threshold for all dose levels. CONCLUSION: Islatravir administered using a subdermal implant has the potential to be an effective and well-tolerated method for administering PrEP to individuals at risk of acquiring HIV-1.


Subject(s)
HIV Infections , HIV-1 , Pre-Exposure Prophylaxis , Humans , HIV Infections/drug therapy , Pre-Exposure Prophylaxis/methods , Leukocytes, Mononuclear , Deoxyadenosines/therapeutic use , Double-Blind Method
9.
Antimicrob Agents Chemother ; 66(12): e0093122, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36346229

ABSTRACT

Islatravir (MK-8591) is a high-potency reverse transcriptase translocation inhibitor in development for the treatment of HIV-1 infection. Data from preclinical and clinical studies suggest that ~30% to 60% of islatravir is excreted renally and that islatravir is not a substrate of renal transporters. To assess the impact of renal impairment on the pharmacokinetics of islatravir, an open-label phase 1 trial was conducted with individuals with severe renal insufficiency (RI). A single dose of islatravir 60 mg was administered orally to individuals with severe RI (estimated glomerular filtration rate [eGFR] <30 mL/min/1.73 m2) and to healthy individuals without renal impairment (matched control group; eGFR ≥90 mL/min/1.73 m2). Safety and tolerability were assessed, and blood samples were collected to measure the pharmacokinetics of islatravir and its major metabolite 4'-ethynyl-2-fluoro-2'deoxyinosine (M4) in plasma, as well as active islatravir-triphosphate (TP) in peripheral blood mononuclear cells (PBMCs). Plasma islatravir and M4 area under the concentration-time curve from zero to infinity (AUC0-∞) were ~2-fold and ~5-fold higher, respectively, in participants with severe RI relative to controls, whereas islatravir-TP AUC0-∞ was ~1.5-fold higher in the RI group than in the control group. The half-lives of islatravir in plasma and islatravir-TP in PBMCs were longer in participants with severe RI than in controls. These findings are consistent with renal excretion playing a major role in islatravir elimination. A single oral dose of islatravir 60 mg was generally well tolerated. These data provide guidance regarding administration of islatravir in individuals with impaired renal function. (This study has been registered at ClinicalTrials.gov under registration no. NCT04303156.).


Subject(s)
Leukocytes, Mononuclear , Renal Insufficiency , Humans , Area Under Curve , Deoxyadenosines , Kidney/metabolism , Leukocytes, Mononuclear/metabolism , Renal Insufficiency/metabolism , Reverse Transcriptase Inhibitors/adverse effects , Reverse Transcriptase Inhibitors/metabolism
10.
Chem Asian J ; 17(14): e202200217, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35384330

ABSTRACT

Two series of ruthenium complexes with various polypyridyl ligands have been prepared. One series of complexes (5 examples) are featured with tetradentate polypyridyl ligands and two acetonitrile molecules at the axial positions of the coordination sphere; the other series (3 examples) include combinations of a tridentate polypyridyl ligand, one 2,2'-bipyridine (bpy) or two picolines, and one acetonitrile ligand. All these complexes were fully characterized by their NMR spectra as well as X-ray single crystal structures. Their electronic absorption and redox data were measured and reported. Of the 8 complexes, three candidates effectively catalyze electrochemical CO2 reduction reaction (CO2 RR) in wet acetonitrile medium, generating CO as the major product. All these three catalytically active complexes contain a 2,2':6',2'':6'',2'''-quaterpyridine (qpy) ligand scaffold. A maximum turnover frequency (TOFmax ) of>1000 s-1 was achieved for the electrocatalytic CO2 reduction at a modest overpotential. On the basis of electrochemical and spectroelectrochemical evidences, the CO2 substrate was proposed to bind with the ruthenium center at the two-electron reduced state of the complex and then entered the catalytic cycle.


Subject(s)
Ruthenium , Acetonitriles , Carbon Dioxide , Ligands , Pyridines/chemistry , Ruthenium/chemistry
11.
Chemistry ; 28(24): e202104430, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35235227

ABSTRACT

Tumor associated macrophages (TAMs) suppress the cancer immune response and are a key target for immunotherapy. The effects of ruthenium and rhodium complexes on TAMs have not been well characterized. To address this gap in the field, a panel of 22 dirhodium and ruthenium complexes were screened against three subtypes of macrophages, triple-negative breast cancer and normal breast tissue cells. Experiments were carried out in 2D and biomimetic 3D co-culture experiments with and without irradiation with blue light. Leads were identified with cell-type-specific toxicity toward macrophage subtypes, cancer cells, or both. Experiments with 3D spheroids revealed complexes that sensitized the tumor models to the chemotherapeutic doxorubicin. Cell surface exposure of calreticulin, a known facilitator of immunogenic cell death (ICD), was increased upon treatment, along with a concomitant reduction in the M2-subtype classifier arginase. Our findings lay a strong foundation for the future development of ruthenium- and rhodium-based chemotherapies targeting TAMs.


Subject(s)
Rhodium , Ruthenium , Triple Negative Breast Neoplasms , Cell Line, Tumor , Humans , Immunotherapy , Rhodium/pharmacology , Ruthenium/pharmacology , Tumor-Associated Macrophages
12.
J Pharm Biomed Anal ; 212: 114639, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35176654

ABSTRACT

For pharmacokinetics characterization of a therapeutic insulin dimer, an ultrasensitive plasma method was required due to the expected low circulating levels in humans. A bioanalytical strategy combining immunoprecipitation enrichment with liquid chromatography - tandem mass spectrometry (LC-MS/MS) analysis of the intact protein offers the opportunity to resolve the analyte from endogenous and exogenous insulin and insulin analogs. Nonetheless, interference from complex background matrix was observed limiting reliable measurements at the low concentration range. A sample preparation approach incorporating protein precipitation and immunoprecipitation was developed and optimized to further reduce sample complexity prior to LC-MS/MS analysis. This approach enabled a deeper level of selectivity and presented a cleaner mass spectrometric detection that may otherwise be confounded. Sample preparation was automated to allow high throughput analysis. The method reached a limit of quantitation at 0.3 ng/mL (25 pM), and a linear dynamic range from 0.3 to 300 ng/mL. Results were highly reproducible, with intra-day and inter-day precision and bias below 11%. Furthermore, the organic solvent treatment involved in protein precipitation is expected to improve assay resistance to the bias introduced by endogenous protein binding such as that exerted by anti-drug antibodies. The method was successfully applied to support clinical pharmacokinetics studies. This approach may potentially be adapted to bioanalysis of low abundance proteins.


Subject(s)
Insulin , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Humans , Proteins , Reproducibility of Results , Tandem Mass Spectrometry/methods
13.
J Int AIDS Soc ; 24(12): e25858, 2021 12.
Article in English | MEDLINE | ID: mdl-34935295

ABSTRACT

INTRODUCTION: Hormonal contraceptives are among the most effective forms of reversible contraception, but many other compounds, including some antiretrovirals, have clinically meaningful drug-drug interactions (DDIs) with hormonal contraceptives. Islatravir is a novel human immunodeficiency virus nucleoside reverse transcriptase translocation inhibitor currently in clinical development for treatment and prevention of HIV infection. A phase 1 clinical trial was conducted to evaluate the DDI of islatravir and the combination of oral contraceptive levonorgestrel (LNG)/ethinyl estradiol (EE). METHODS: This was an open-label, two-period, fixed-sequence, DDI clinical trial in healthy, postmenopausal or bilaterally oophorectomized females aged 18 through 65 years in the United States between October 2016 and January 2017. A single dose of LNG 0.15 mg/EE 0.03 mg was given followed by a 7-day washout. Islatravir, 20 mg, was then dosed once weekly for 3 weeks; a single dose of LNG 0.15 mg/EE 0.03 mg was given concomitantly with the third dose of islatravir. Pharmacokinetic samples for plasma LNG and EE concentrations were collected pre-dose and up to 120 hours post-dose in each period. Safety and tolerability were assessed throughout the trial by clinical assessments, laboratory evaluations and examination of adverse events. RESULTS AND DISCUSSION: Fourteen participants were enrolled. The pharmacokinetics of LNG and EE were not meaningfully altered by co-administration with islatravir. For the comparison of (islatravir + LNG/EE)/(LNG/EE alone), the geometric mean ratios (GMRs) (90% confidence intervals [CIs]) for LNG AUC0-inf and Cmax were 1.13 (1.06, 1.20) and 0.965 (0.881, 1.06), respectively. For EE, the GMRs (90% CI) for AUC0-inf and Cmax were 1.05 (0.981, 1.11) and 1.02 (0.971, 1.08), respectively. Co-administration of all three drugs was generally well tolerated. CONCLUSIONS: The results of this trial support the use of LNG/EE contraceptives in combination with islatravir without dose adjustment.


Subject(s)
Ethinyl Estradiol , HIV Infections , Adult , Contraception , Contraceptives, Oral, Combined/adverse effects , Deoxyadenosines , Drug Interactions , Ethinyl Estradiol/adverse effects , Female , Humans , Levonorgestrel/adverse effects
14.
Inorg Chem ; 60(23): 17976-17985, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34808047

ABSTRACT

Novel cobalt and zinc complexes with the tetradentate ppq (8-(1″,10″-phenanthrol-2″-yl)-2-(pyrid-2'-yl)quinoline) ligand have been synthesized and fully characterized. Electrochemical measurements have shown that the formal monovalent complex [Co(ppq)(PPh3)]+ (2) undergoes two stepwise ligand-based electroreductions in DMF, affording a [Co(ppq)DMF]-1 species. Theoretical calculations have described the electronic structure of [Co(ppq)DMF]-1 as a low-spin Co(II) center coupling with a triple-reduced ppq radical ligand. In the presence of triethylammonium as the proton donor, the cobalt complex efficiently drives electrocatalytic hydrogen evolution with a maximum turnover frequency of thousands per second. A mechanistic investigation proposes an EECC H2-evolving pathway, where the second ligand-based redox process (E), generating the [Co(ppq)DMF]-1 intermediate, initiates proton reduction, and the second proton transfer process (C) is the rate-determining step. This work provides a unique example for understanding the role of redox-active ligands in electrocatalytic H2 evolution by transition metal sites.

15.
Clin Pharmacol Drug Dev ; 10(12): 1432-1441, 2021 12.
Article in English | MEDLINE | ID: mdl-34676683

ABSTRACT

Islatravir, an investigational nucleoside reverse transcriptase translocation inhibitor, is in clinical development for the treatment and prevention of HIV-1 infection. Because islatravir may be coadministered with other antiretroviral agents, assessment of potential drug-drug interactions are warranted. This phase 1, open-label, fixed-sequence, 2-period trial in adults without HIV (N = 12) assessed the safety and pharmacokinetic interactions of islatravir administered with dolutegravir and tenofovir disoproxil fumarate (TDF). In period 1, participants received a single oral dose of islatravir (20 mg). In period 2, participants received oral doses of dolutegravir (50 mg) and TDF (300 mg) once daily on days 1 through 11, with a single oral dose of islatravir (20 mg) coadministered on day 8. There were no clinically significant changes in islatravir, dolutegravir, or TDF pharmacokinetics following coadministration. Islatravir was generally well tolerated when administered alone or in combination with dolutegravir and TDF. Coadministration of islatravir, dolutegravir, and TDF is supported, with no clinically meaningful effect on pharmacokinetics, safety, or tolerability in participants without HIV.


Subject(s)
HIV-1 , Adult , Anti-Retroviral Agents , Deoxyadenosines , Drug Interactions , Heterocyclic Compounds, 3-Ring , Humans , Oxazines , Piperazines , Pyridones , Tenofovir/pharmacokinetics
16.
J Acquir Immune Defic Syndr ; 88(3): 314-321, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34651606

ABSTRACT

BACKGROUND: Islatravir (MK-8591) is a novel nucleoside analog in development for the treatment and prevention of HIV-1 infection. Islatravir has potent antiviral activity and a long intracellular half-life. SETTING: A 3-panel, randomized, double-blind, placebo-controlled, multiple-dose study in 36 adults without HIV evaluated the safety, tolerability, and pharmacokinetics of islatravir after daily administration. METHODS: Islatravir or placebo was administered orally once daily for 42 days (5 mg) or 28 days (0.25 mg; 0.75 mg). Blood samples were taken at prespecified time points for pharmacokinetic analysis of islatravir (plasma) and islatravir-triphosphate (ISL-TP; peripheral blood mononuclear cells [PBMCs]). Rectal and vaginal tissue samples were also collected in a subset of participants. Safety and tolerability were evaluated throughout. RESULTS: The pharmacokinetics of islatravir were approximately dose proportional, with concentrations approaching a steady state between days 14 and 21 in plasma and by day 28 for ISL-TP in PBMCs. Plasma exposure accumulation was 1.5-fold to 1.8-fold, and ISL-TP exposure accumulation was ∼10-fold. The apparent terminal half-life of ISL-TP was 177-209 hours. The ISL-TP pharmacokinetic trough threshold-the minimal concentration required for efficacy-of 0.05 pmol/106 cells was achieved after a single administration at all dose levels. Rectal and vaginal tissue also exhibited potentially therapeutic concentrations. Islatravir was generally well tolerated at all doses. CONCLUSIONS: ISL-TP levels in PBMCs were above the threshold projected for antiviral efficacy against wild-type HIV after a single 0.25-mg dose. Multiple once-daily dosing of islatravir in adults without HIV was generally well tolerated up to doses of 5 mg administered for up to 6 weeks.


Subject(s)
Deoxyadenosines/pharmacokinetics , HIV Seronegativity , Administration, Oral , Antiviral Agents/therapeutic use , Deoxyadenosines/therapeutic use , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Female , Half-Life , Humans , Leukocytes, Mononuclear
17.
Nat Med ; 27(10): 1712-1717, 2021 10.
Article in English | MEDLINE | ID: mdl-34608329

ABSTRACT

Islatravir (MK-8591) is a highly potent type 1 human immunodeficiency virus (HIV-1) nucleoside reverse transcriptase translocation inhibitor with a long intracellular half-life that is in development for the prevention and treatment of HIV-1. We conducted a randomized, double-blind, placebo-controlled, phase 1 trial in adults without HIV-1 infection. Participants received islatravir or placebo subdermal implants for 12 weeks and were monitored throughout this period and after implant removal. The co-primary end points were safety and tolerability of the islatravir implant and pharmacokinetics, including concentration at day 85, of islatravir triphosphate in peripheral blood mononuclear cells (PBMCs). Secondary end points included additional pharmacokinetic parameters for islatravir triphosphate in PBMCs and the plasma pharmacokinetic profile of islatravir. Based on preclinical data, two doses were assessed: 54 mg (n = 8, two placebo) and 62 mg (n = 8, two placebo). The most frequently reported adverse events were mild-to-moderate implant-site reactions (induration, hematoma, pain). Throughout the 12-week trial, geometric mean islatravir triphosphate concentrations were above a pharmacokinetic threshold of 0.05 pmol per 106 PBMCs, which was estimated to provide therapeutic reverse transcriptase inhibition (concentration at day 85 (percentage of geometric coefficient of variation): 54 mg, 0.135 pmol per 106 cells (27.3); 62 mg, 0.272 pmol per 106 cells (45.2)). Islatravir implants at both doses were safe and resulted in mean concentrations above the pharmacokinetic threshold through 12 weeks, warranting further investigation of islatravir implants as a potential HIV prevention strategy.


Subject(s)
Anti-HIV Agents/administration & dosage , Deoxyadenosines/administration & dosage , HIV Infections/drug therapy , Reverse Transcriptase Inhibitors/administration & dosage , Adult , Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacokinetics , Deoxyadenosines/adverse effects , Deoxyadenosines/pharmacokinetics , Double-Blind Method , HIV Infections/genetics , HIV Infections/virology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , HIV-1/pathogenicity , Humans , Leukocytes, Mononuclear/drug effects , Male , Middle Aged , Placebos , Reverse Transcriptase Inhibitors/adverse effects , Reverse Transcriptase Inhibitors/pharmacokinetics , Virus Replication/drug effects
18.
Clin Transl Sci ; 14(5): 1935-1944, 2021 09.
Article in English | MEDLINE | ID: mdl-34463432

ABSTRACT

Islatravir (MK-8591) is a nucleoside analogue in development for the treatment and prevention of HIV-1. Two phase 1 trials were conducted during initial evaluation of islatravir: rising single doses (Study 1) and rising multiple doses (Study 2) of oral islatravir in male and female participants without HIV (aged 18-60 years). Safety, tolerability, and pharmacokinetics of islatravir (plasma) and islatravir-triphosphate (peripheral blood mononuclear cells) were assessed. In Study 1, 24 participants, assigned to 1 of 3 panels, received alternating single doses of islatravir in a fasted state from 5 mg to 400 mg, or placebo, over 3 dosing periods; a 30 mg dose was additionally assessed following a high-fat meal. In Study 2, 8 participants per dose received 3 once-weekly doses of 10, 30, or 100 mg islatravir or placebo in a fasted state. For each panel in both trials, 6 participants received active drug and 2 received placebo. Islatravir was generally well-tolerated, with no serious adverse events or discontinuations due to adverse events. Islatravir was rapidly absorbed (median time to maximum plasma concentration 0.5 hours); plasma half-life was 49-61 h; intracellular islatravir-triphosphate half-life was 118-171 h. Plasma exposure increased in an approximately dose-proportional manner; there was no meaningful food effect. There was a modest degree of intracellular islatravir-triphosphate accumulation after multiple weekly dosing. After single oral doses of islatravir greater than or equal to 5 mg, intracellular islatravir-triphosphate levels were comparable to levels associated with efficacy in preclinical studies. These results warrant continued clinical investigation of islatravir.


Subject(s)
Anti-HIV Agents/adverse effects , Deoxyadenosines/adverse effects , Administration, Oral , Adolescent , Adult , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Deoxyadenosines/administration & dosage , Deoxyadenosines/pharmacokinetics , Dose-Response Relationship, Drug , Double-Blind Method , Female , Half-Life , Healthy Volunteers , Humans , Leukocytes, Mononuclear , Male , Middle Aged , Young Adult
19.
Circ Cardiovasc Imaging ; 14(6): e012293, 2021 06.
Article in English | MEDLINE | ID: mdl-34126754

ABSTRACT

BACKGROUND: We have recently tested an automated machine-learning algorithm that quantifies left ventricular (LV) ejection fraction (EF) from guidelines-recommended apical views. However, in the point-of-care (POC) setting, apical 2-chamber views are often difficult to obtain, limiting the usefulness of this approach. Since most POC physicians often rely on visual assessment of apical 4-chamber and parasternal long-axis views, our algorithm was adapted to use either one of these 3 views or any combination. This study aimed to (1) test the accuracy of these automated estimates; (2) determine whether they could be used to accurately classify LV function. METHODS: Reference EF was obtained using conventional biplane measurements by experienced echocardiographers. In protocol 1, we used echocardiographic images from 166 clinical examinations. Both automated and reference EF values were used to categorize LV function as hyperdynamic (EF>73%), normal (53%-73%), mildly-to-moderately (30%-52%), or severely reduced (<30%). Additionally, LV function was visually estimated for each view by 10 experienced physicians. Accuracy of the detection of reduced LV function (EF<53%) by the automated classification and physicians' interpretation was assessed against the reference classification. In protocol 2, we tested the new machine-learning algorithm in the POC setting on images acquired by nurses using a portable imaging system. RESULTS: Protocol 1: the agreement with the reference EF values was good (intraclass correlation, 0.86-0.95), with biases <2%. Machine-learning classification of LV function showed similar accuracy to that by physicians in most views, with only 10% to 15% cases where it was less accurate. Protocol 2: the agreement with the reference values was excellent (intraclass correlation=0.84) with a minimal bias of 2.5±6.4%. CONCLUSIONS: The new machine-learning algorithm allows accurate automated evaluation of LV function from echocardiographic views commonly used in the POC setting. This approach will enable more POC personnel to accurately assess LV function.


Subject(s)
Algorithms , Deep Learning , Echocardiography, Three-Dimensional/methods , Heart Ventricles/diagnostic imaging , Point-of-Care Systems , Stroke Volume/physiology , Ventricular Function, Left/physiology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prospective Studies , Reproducibility of Results , Young Adult
20.
Clin Drug Investig ; 41(7): 629-638, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34151413

ABSTRACT

BACKGROUND AND OBJECTIVES: Islatravir (MK-8591) is a novel nucleoside analogue in development for the treatment and prevention of HIV-1 infection. Doravirine is a non-nucleoside reverse transcriptase inhibitor indicated for the treatment of HIV-1 infection. This study evaluated the pharmacokinetics, safety, and tolerability of islatravir and doravirine coadministration in a double-blind, placebo-controlled, randomized, fixed-sequence study. METHODS: Adult participants without HIV infection were administered oral doravirine 100 mg (n = 10) or placebo (n = 4) once daily (QD) for 5 days, immediately followed by oral islatravir 2.25 mg (n = 10) or placebo QD (n = 4) for 14 days; islatravir 2.25 mg and doravirine 100 mg QD, or placebo QD, were then coadministered for 5 days. Pharmacokinetic and safety data were collected. RESULTS: Doravirine geometric least-squares mean ratios (90% confidence intervals (CIs)) of (doravirine + islatravir)/doravirine for the area under the plasma drug concentration-time curve over 24 h (AUC0-24h), maximum plasma concentration (Cmax), and plasma concentration at 24 h post-dose (C24h) were not meaningfully impacted. Islatravir geometric least-squares mean ratios (90% CI) of (islatravir + doravirine)/islatravir for AUC0-24h and Cmax were both close to unity, 1.06 (1.01, 1.12) and 1.08 (0.91, 1.27), respectively. All study regimens were generally well tolerated. CONCLUSION: These results indicate that coadministration of islatravir and doravirine had no clinically meaningful effect on the pharmacokinetics of either drug, and support further clinical investigation of islatravir in combination with doravirine for the treatment of HIV-1 infection.


Subject(s)
Deoxyadenosines/administration & dosage , Pyridones/administration & dosage , Triazoles/administration & dosage , Administration, Oral , Adult , Area Under Curve , Deoxyadenosines/adverse effects , Deoxyadenosines/blood , Deoxyadenosines/pharmacokinetics , Double-Blind Method , Drug Administration Schedule , Drug Interactions , Female , Half-Life , Humans , Least-Squares Analysis , Male , Middle Aged , Placebo Effect , Pyridones/adverse effects , Pyridones/blood , Pyridones/pharmacokinetics , ROC Curve , Sleepiness , Triazoles/adverse effects , Triazoles/blood , Triazoles/pharmacokinetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL