Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967237

ABSTRACT

Herein, we report a transition-metal and base-free protocol to access a wide range of functionalized indenone derivatives through a HMPA-H2O-mediated oxygenative annulation of 2-alkynylphenyl-substituted p-quinone methides. This method worked effectively for most of the p-QMs investigated and the corresponding indenone derivatives were obtained in moderate to good yields. This methodology was further extended to the formal synthesis of one of the resveratrol based natural products, (±)-isopaucifloral F.

2.
Chem Commun (Camb) ; 58(95): 13238-13241, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36354976

ABSTRACT

A Pd-catalyzed direct method has been developed to access 1,3-disubstituted indolizines. This reaction proceeds through a regiospecific annulation of terminal alkynes with 2-pyridinyl-substituted p-quinone methides and, in most of the cases, the desired 1,3-disubstituted indolizines were obtained in moderate to good isolated yields. The control experiments suggested that the reaction does proceed through a substrate-controlled regiospecific formal [3 + 2]-annulation pathway.


Subject(s)
Alkynes , Indolizines , Catalysis , Molecular Structure , Quinones
3.
Org Biomol Chem ; 19(44): 9541-9564, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34704583

ABSTRACT

The development of novel small molecule-based catalysts for organic transformations has increased noticeably in the last two decades. A very recent addition to this particular research area is cyclopropene- and cyclopropenium-based catalysts. At one point in time, particularly in the mid-20th century, much attention was focused on the structural aspects and physical properties of cyclopropene-based compounds. However, a paradigm shift was observed in the late 20th century, and the focus shifted to the synthetic utility of these compounds. In fact, a wide range of cyclopropene derivatives have been found serving as valuable synthons for the construction of carbocycles, heterocycles and other useful organic compounds. In the last few years, the catalytic applications of cyclopropene/cyclopropenium-based compounds have been uncovered and many synthetic protocols have been developed using cyclopropene-based compounds as organocatalysts. Therefore, the main objective of this review is to highlight recent developments in the catalytic applications of cyclopropene-based small molecules in different areas of organocatalysis such as phase-transfer catalysis (PTC), Brønsted base catalysis, hydrogen-bond donor catalysis, nucleophilic carbene catalysis, and electrophotocatalysis developed within the past two decades.

SELECTION OF CITATIONS
SEARCH DETAIL
...