Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 73(2): 425-442, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864753

ABSTRACT

The potential of pyrolyzed Mytella falcata shells as an adsorbent for removing methylene blue dye molecules from aqueous solutions was investigated. The study found that the adsorbent produced at 600 °C of pyrolysis temperature, with an adsorbent mass of 0.5 g, particle diameter of 0.297-0.149 mm, and pH 12.0, demonstrated the highest dye molecule removal efficiency of 82.41%. The material's porosity was observed through scanning electron microscopy, which is favorable for adsorption, while Fourier-transform infrared spectroscopy and X-Ray diffraction analysis analyses confirmed the presence of calcium carbonate in the crystalline phases. The pseudo-second order model was found to be the best fit for the data, suggesting that the adsorption mechanism involves two steps: external diffusion and diffusion via the solid pores. The Redlich-Peterson isotherm model better represented the equilibrium data, and the methylene blue adsorption was found to be spontaneous, favorable, and endothermic. The hydrogen peroxide with UV oxidation was found to be the most efficient method of regeneration, with a regeneration percentage of 63% achieved using 600 mmol.L-1 of oxidizing agents. The results suggest that pyrolyzed Mytella falcata shells could serve as an ecologically viable adsorbent alternative, reducing the amount of waste produced in the local environment and at the same time removing pollutants from the water. The material's adsorption capacity remained almost constant in the first adsorption-oxidation cycles, indicating its potential for repeated use.


Subject(s)
Methylene Blue , Water Pollutants, Chemical , Thermodynamics , Methylene Blue/chemistry , Photolysis , Hydrogen-Ion Concentration , Temperature , Kinetics , Adsorption , Water , Water Pollutants, Chemical/chemistry
2.
J Hazard Mater ; 443(Pt B): 130273, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36327849

ABSTRACT

The accelerated use, massive disposal, and contamination with face masks during the COVID-19 pandemic have raised new questions regarding their negative impact on the environment emerged. One major concern is whether microplastics (MPs) derived from face masks (FMPs) represent an important ecotoxicological hazard. Here, we discussed the shortcomings, loose ends, and considerations of the current literature investigating the ecotoxicological effects of FMPs on aquatic and terrestrial organisms. Overall, there are multiple uncertainties regarding the true impact of FMPs at a certain concentration due to the presence of uncontrolled or unknown degradation products, such as MPs of various size ranges even nano-sized (<1 µm) and chemical additives. It is apparent that FMPs may induce endocrine-disrupting and behavioral effects in different organisms. However, the results of FMPs should be carefully interpreted, as these cannot be extrapolated at a global scale, by taking into account a number of criteria such as face mask manufacturers, providers, consumer preferences, and type of face masks. Considering these uncertainties, it is still not possible to estimate the contribution of face masks to the already existing MP issue.


Subject(s)
COVID-19 , Masks , Humans , Microplastics/toxicity , Plastics , Pandemics , COVID-19/prevention & control
3.
Environ Res ; 212(Pt A): 113123, 2022 09.
Article in English | MEDLINE | ID: mdl-35339467

ABSTRACT

The intensification of urbanisation and industrial activities significantly exacerbates the distribution of toxic contaminations into the aqueous environment. Persistent organic pollutants (POPs) have received considerable attention in the past few decades because of their persistence, long-distance migration, potential bioaccumulation, latent toxicity for humans and wildlife. There is no doubt that POPs cause serious effects on the global ecosystem. Therefore, it is necessary to develop a simple, safe and sustainable approach to remove POPs from water bodies. Among other conventional techniques, the adsorption process has proven to be a more effective method for eliminating POPs and to a larger extent meet discharge regulations. Nanomaterials can effectively adsorb POPs from aqueous solutions. For most POPs, a >70% adsorptive removal efficiency was achieved. The major mechanisms for POPS uptake by nano-adsorbents includes electrostatic interaction, hydrophobic (van der Waals, π-π and electron donor-acceptor) interaction and hydrogen bonding. Nano-adsorbent can sustain a >90% POPs adsorptive removal for about 3 cycles and reuseable for up to 10 cycles. Challenges around adsorbent ecotoxicity and safe disposal were also discussed. The present review evaluated recent research outcomes on nanomaterials that are employed to remove POPs in water systems.


Subject(s)
Persistent Organic Pollutants , Water Pollutants, Chemical , Adsorption , Ecosystem , Humans , Water/chemistry , Water Pollutants, Chemical/analysis
4.
Environ Sci Pollut Res Int ; 29(8): 11004-11026, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35001268

ABSTRACT

Researchers in recent years have utilized a broad spectrum of treatment technologies in treating bakers' yeast production wastewater. This paper aims to review the treatment technologies for the wastewater, compare the process technologies, discuss recent innovations, and propose future perspectives in the research area. The review observed that nanofiltration was the most effective membrane process for the treatment of the effluent (at >95% pollutant rejection). Other separation processes like adsorption and distillation had technical challenges of desorption, a poor fit for high pollutant load and cost limitations. Chemical treatment processes have varying levels of success but they are expensive and produce toxic sludge. Sludge production would be a hurdle when product recovery and reuse are targeted. It is difficult to make an outright choice of the best process for treating the effluent because each has its merits and demerits and an appropriate choice can be made when all factors are duly considered. The process intensification of the industrial-scale production of the bakers' yeast process will be a very direct approach, where the process optimisation, zero effluent discharge, and enhanced recovery of value-added product from the waste streams are important approaches that need to be taken into account.


Subject(s)
Saccharomyces cerevisiae , Wastewater , Distillation , Sewage , Technology , Waste Disposal, Fluid , Wastewater/analysis
5.
J Environ Chem Eng ; 9(6): 106595, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34692403

ABSTRACT

The human coronavirus disease-2019 (COVID-19) caused by SARS-CoV-2 is now a global pandemic. Personal hygiene such as hand-washing, the use of personal protective equipment, and social distancing via local and national lockdowns are used to reduce the risk of transmission of SARS-CoV-2. COVID-19 and the associated lockdowns may have significant impacts on environmental quality and ergonomics. However, limited studies exists on the impacts of COVID-19 and the associated lockdowns on environmental quality and ergonomics in low-income settings. Therefore, the present study investigated the impacts of the COVID-19 outbreak on socioeconomics, ergonomics and environment (water quality, air quality and noise) in Uttarakhand, India. Approximately 55% of respondents experienced headaches, and the other common health-related issue was back pain, with 45% of respondents having problems with their backs. Water and air quality significantly improved during the lockdown relative to the pre-lockdown period, but was observed to return to their previous characteristics afterwards. Lockdowns significant increased the concentration of indoor air pollutants while noise pollution levels significantly declined. In summary, lockdowns have adverse impacts on ergonomics, resulting in work-related human health risks. The impacts of lockdowns on environmental quality are mixed: temporary improvements on water and air quality, and noise reduction were observed, but indoor air quality deteriorated. Therefore, during lockdowns there is a need to minimize the adverse environmental and ergonomic impacts of lockdowns while simultaneously enhancing the beneficial impacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...