Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746295

ABSTRACT

The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecules forming this complex composite material constantly rearrange under mechanical stress to confer this protective capacity. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and primarily located proximal to the inner leaflet of the plasma membrane and engages in protein-lipid interactions via a set of membrane-anchoring domains. Spectrin is linked by short actin filaments and its conformation varies in different types of cells. In this work, we developed a generalized network model for the membrane skeleton integrated with myosin contractility and membrane mechanics to investigate the response of the spectrin meshwork to mechanical loading. We observed that the force generated by membrane bending is important to maintain a smooth skeletal structure. This suggests that the membrane is not just supported by the skeleton, but has an active contribution to the stability of the cell structure. We found that spectrin and myosin turnover are necessary for the transition between stress and rest states in the skeleton. Our model reveals that the actin-spectrin meshwork dynamics are balanced by the membrane forces with area constraint and volume restriction promoting the stability of the membrane skeleton. Furthermore, we showed that cell attachment to the substrate promotes shape stabilization. Thus, our proposed model gives insight into the shared mechanisms of the membrane skeleton associated with myosin and membrane that can be tested in different types of cells.

2.
Comput Biol Med ; 175: 108499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677172

ABSTRACT

Familial hypertrophic cardiomyopathy (HCM) is a significant precursor of heart failure and sudden cardiac death, primarily caused by mutations in sarcomeric and structural proteins. Despite the extensive research on the HCM genotype, the complex and context-specific nature of many signaling and metabolic pathways linking the HCM genotype to phenotype has hindered therapeutic advancements for patients. Here, we have developed a computational model of HCM encompassing cardiomyocyte signaling and metabolic networks and their associated interactions. Utilizing a stochastic logic-based ODE approach, we linked cardiomyocyte signaling to the metabolic network through a gene regulatory network and post-translational modifications. We validated the model against published data on activities of signaling species in the HCM context and transcriptomes of two HCM mouse models (i.e., R403Q-αMyHC and R92W-TnT). Our model predicts that HCM mutation induces changes in metabolic functions such as ATP synthase deficiency and a transition from fatty acids to carbohydrate metabolism. The model indicated major shifts in glutamine-related metabolism and increased apoptosis after HCM-induced ATP synthase deficiency. We predicted that the transcription factors STAT, SRF, GATA4, TP53, and FoxO are the key regulators of cardiomyocyte hypertrophy and apoptosis in HCM in alignment with experiments. Moreover, we identified shared (e.g., activation of PGC1α by AMPK, and FHL1 by titin) and context-specific mechanisms (e.g., regulation of Ca2+ sensitivity by titin in HCM patients) that may control genotype-to-phenotype transition in HCM across different species or mutations. We also predicted potential combination drug targets for HCM (e.g., mavacamten plus ROS inhibitors) preventing or reversing HCM phenotype (i.e., hypertrophic growth, apoptosis, and metabolic remodeling) in cardiomyocytes. This study provides new insights into mechanisms linking genotype to phenotype in familial hypertrophic cardiomyopathy and offers a framework for assessing new treatments and exploring variations in HCM experimental models.


Subject(s)
Cardiomyopathy, Hypertrophic , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Animals , Mice , Humans , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Signal Transduction , Models, Cardiovascular , Phenotype , Genotype
3.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790389

ABSTRACT

Dendritic spines are small protrusions on dendrites in neurons and serve as sites of postsynaptic activity. Some of these spines contain smooth endoplasmic reticulum (SER), and sometimes an even further specialized SER known as the spine apparatus (SA). In this work, we developed a stochastic spatial model to investigate the role of the SER and the SA in modulating Ca 2+ dynamics. Using this model, we investigated how ryanodine receptor (RyR) localization, spine membrane geometry, and SER geometry can impact Ca 2+ transients in the spine and in the dendrite. Our simulations found that RyR opening is dependent on where it is localized in the SER and on the SER geometry. In order to maximize Ca 2+ in the dendrites (for activating clusters of spines and spine-spine communication), a laminar SA was favorable with RyRs localized in the neck region, closer to the dendrite. We also found that the presence of the SER without the laminar structure, coupled with RyR localization at the head, leads to higher Ca 2+ presence in the spine. These predictions serve as design principles for understanding how spines with an ER can regulate Ca 2+ dynamics differently from spines without ER through a combination of geometry and receptor localization. Highlights: 1RyR opening in dendritic spine ER is location dependent and spine geometry dependent. Ca 2+ buffers and SERCA can buffer against runaway potentiation of spines even when CICR is activated. RyRs located towards the ER neck allow for more Ca 2+ to reach the dendrites. RyRs located towards the spine head are favorable for increased Ca 2+ in spines.

4.
NPJ Syst Biol Appl ; 9(1): 34, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460570

ABSTRACT

Neuronal energy consumption is vital for information processing and memory formation in synapses. The brain consists of just 2% of the human body's mass, but consumes almost 20% of the body's energy budget. Most of this energy is attributed to active transport in ion signaling, with calcium being the canonical second messenger of synaptic transmission. Here, we develop a computational model of synaptic signaling resulting in the activation of two protein kinases critical in metabolic regulation and cell fate, AMP-Activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and investigate the effect of glutamate stimulus frequency on their dynamics. Our model predicts that frequencies of glutamate stimulus over 10 Hz perturb AMPK and mTOR oscillations at higher magnitudes by up to 36% and change the area under curve (AUC) by 5%. This dynamic difference in AMPK and mTOR activation trajectories potentially differentiates high frequency stimulus bursts from basal neuronal signaling leading to a downstream change in synaptic plasticity. Further, we also investigate the crosstalk between insulin receptor and calcium signaling on AMPK and mTOR activation and predict that the pathways demonstrate multistability dependent on strength of insulin signaling and metabolic consumption rate. Our predictions have implications for improving our understanding of neuronal metabolism, synaptic pruning, and synaptic plasticity.


Subject(s)
AMP-Activated Protein Kinases , Calcium Signaling , Humans , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Synapses/metabolism , Computer Simulation , Glutamates/metabolism , Glutamates/pharmacology
5.
J Physiol ; 601(3): 483-515, 2023 02.
Article in English | MEDLINE | ID: mdl-36463416

ABSTRACT

Yes-associated protein (YAP) and its homologue TAZ are transducers of several biochemical and biomechanical signals, integrating multiplexed inputs from the microenvironment into higher level cellular functions such as proliferation, differentiation and migration. Emerging evidence suggests that Ca2+ is a key second messenger that connects microenvironmental input signals and YAP/TAZ regulation. However, studies that directly modulate Ca2+ have reported contradictory YAP/TAZ responses: in some studies, a reduction in Ca2+ influx increases the activity of YAP/TAZ, while in others, an increase in Ca2+ influx activates YAP/TAZ. Importantly, Ca2+ and YAP/TAZ exhibit distinct spatiotemporal dynamics, making it difficult to unravel their connections from a purely experimental approach. In this study, we developed a network model of Ca2+ -mediated YAP/TAZ signalling to investigate how temporal dynamics and crosstalk of signalling pathways interacting with Ca2+ can alter the YAP/TAZ response, as observed in experiments. By including six signalling modules (e.g. GPCR, IP3-Ca2+ , kinases, RhoA, F-actin and Hippo-YAP/TAZ) that interact with Ca2+ , we investigated both transient and steady-state cell response to angiotensin II and thapsigargin stimuli. The model predicts that stimuli, Ca2+ transients and frequency-dependent relationships between Ca2+ and YAP/TAZ are primarily mediated by cPKC, DAG, CaMKII and F-actin. Simulation results illustrate the role of Ca2+ dynamics and CaMKII bistable response in switching the direction of changes in Ca2+ -induced YAP/TAZ activity. A frequency-dependent YAP/TAZ response revealed the competition between upstream regulators of LATS1/2, leading to the YAP/TAZ non-monotonic response to periodic GPCR stimulation. This study provides new insights into underlying mechanisms responsible for the controversial Ca2+ -YAP/TAZ relationship observed in experiments. KEY POINTS: YAP/TAZ integrates biochemical and biomechanical inputs to regulate cellular functions, and Ca2+ acts as a key second messenger linking cellular inputs to YAP/TAZ. Studies have reported contradictory Ca2+ -YAP/TAZ relationships for different cell types and stimuli. A network model of Ca2+ -mediated YAP/TAZ signalling was developed to investigate the underlying mechanisms of divergent Ca2+ -YAP/TAZ relationships. The model predicts context-dependent Ca2+ transient, CaMKII bistable response and frequency-dependent activation of LATS1/2 upstream regulators as mechanisms governing the Ca2+ -YAP/TAZ relationship. This study provides new insights into the underlying mechanisms of the controversial Ca2+ -YAP/TAZ relationship to better understand the dynamics of cellular functions controlled by YAP/TAZ activity.


Subject(s)
Actins , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Actins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Signal Transduction/physiology , Protein Serine-Threonine Kinases/metabolism , Phosphorylation
6.
J R Soc Interface ; 19(194): 20220448, 2022 09.
Article in English | MEDLINE | ID: mdl-36128706

ABSTRACT

The deformation of cellular membranes regulates trafficking processes, such as exocytosis and endocytosis. Classically, the Helfrich continuum model is used to characterize the forces and mechanical parameters that cells tune to accomplish membrane shape changes. While this classical model effectively captures curvature generation, one of the core challenges in using it to approximate a biological process is selecting a set of mechanical parameters (including bending modulus and membrane tension) from a large set of reasonable values. We used the Helfrich model to generate a large synthetic dataset from a random sampling of realistic mechanical parameters and used this dataset to train machine-learning models. These models produced promising results, accurately classifying model behaviour and predicting membrane shape from mechanical parameters. We also note emerging methods in machine learning that can leverage the physical insight of the Helfrich model to improve performance and draw greater insight into how cells control membrane shape change.


Subject(s)
Machine Learning , Cell Membrane
7.
NPJ Syst Biol Appl ; 7(1): 26, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078916

ABSTRACT

Spatiotemporal compartmentation of calcium dynamics is critical for neuronal function, particularly in postsynaptic spines. This exquisite level of Ca2+ compartmentalization is achieved through the storage and release of Ca2+ from various intracellular organelles particularly the endoplasmic reticulum (ER) and the mitochondria. Mitochondria and ER are established storage organelles controlling Ca2+ dynamics in neurons. Mitochondria also generate a majority of energy used within postsynaptic spines to support the downstream events associated with neuronal stimulus. Recently, high resolution microscopy has unveiled direct contact sites between the ER and the mitochondria (MERCs), which directly channel Ca2+ release from the ER into the mitochondrial membrane. In this study, we develop a computational 3D reaction-diffusion model to investigate the role of MERCs in regulating Ca2+ and ATP dynamics. This spatiotemporal model accounts for Ca2+ oscillations initiated by glutamate stimulus of metabotropic and ionotropic glutamate receptors and Ca2+ changes in four different compartments: cytosol, ER, mitochondria, and the MERC microdomain. Our simulations predict that the organization of these organelles and inter-organellar contact sites play a key role in modulating Ca2+ and ATP dynamics.We further show that the crosstalk between geometry (mitochondria and MERC) and metabolic parameters (cytosolic ATP hydrolysis, ATP generation) influences the neuronal energy state. Our findings shed light on the importance of organelle interactions in predicting Ca2+ dynamics in synaptic signaling. Overall, our model predicts that a combination of MERC linkage and mitochondria size is necessary for optimal ATP production in the cytosol.


Subject(s)
Endoplasmic Reticulum , Mitochondrial Membranes , Calcium/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria , Mitochondrial Membranes/metabolism
8.
Sci Rep ; 10(1): 17866, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082406

ABSTRACT

The shape of the cell is connected to its function; however, we do not fully understand underlying mechanisms by which global shape regulates a cell's functional capabilities. Using theory, experiments and simulation, we investigated how physiologically relevant cell shape changes affect subcellular organization, and consequently intracellular signaling, to control information flow needed for phenotypic function. Vascular smooth muscle cells going from a proliferative and motile circular shape to a contractile fusiform shape show changes in the location of the sarcoplasmic reticulum, inter-organelle distances, and differential distribution of receptors in the plasma membrane. These factors together lead to the modulation of signals transduced by the M3 muscarinic receptor/Gq/PLCß pathway at the plasma membrane, amplifying Ca2+ dynamics in the cytoplasm, and the nucleus resulting in phenotypic changes, as determined by increased activity of myosin light chain kinase in the cytoplasm and enhanced nuclear localization of the transcription factor NFAT. Taken together, our observations show a systems level phenomenon whereby global cell shape affects subcellular organization to modulate signaling that enables phenotypic changes.


Subject(s)
Calcium Signaling/physiology , Cell Shape/physiology , Muscle, Smooth, Vascular/metabolism , Organelles/metabolism , Subcellular Fractions/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Fluorescence Resonance Energy Transfer , Muscle, Smooth, Vascular/cytology , Rats
9.
Commun Chem ; 3(1): 17, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-36703372

ABSTRACT

Cell membranes are composed of a hydrated lipid bilayer that is molecularly complex and diverse, and the link between molecular hydration structure and membrane macroscopic properties is not well understood, due to a lack of technology that can probe and relate molecular level hydration information to micro- and macroscopic properties. Here, we demonstrate a direct link between lipid hydration structure and macroscopic dynamic curvature fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we observe the formation of transient domains of ordered water at the interface of freestanding lipid membranes. These domains are induced by the binding of divalent ions and their structure is ion specific. Using nonlinear optical theory, we convert the spatiotemporal SH intensity into maps of membrane potential, surface charge density, and binding free energy. Using an electromechanical theory of membrane bending, we show that transient electric field gradients across the membrane induce spatiotemporal membrane curvature fluctuations.

10.
Soft Matter ; 16(3): 784-797, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31830191

ABSTRACT

Membrane neck formation is essential for scission, which, as recent experiments on tubules have demonstrated, can be location dependent. The diversity of biological machinery that can constrict a neck such as dynamin, actin, ESCRTs and BAR proteins, and the range of forces and deflection over which they operate, suggest that the constriction process is functionally mechanical and robust to changes in biological environment. In this study, we used a mechanical model of the lipid bilayer to systematically investigate the influence of location, symmetry constraints, and helical forces on membrane neck constriction. Simulations from our model demonstrated that the energy barriers associated with constriction of a membrane neck are location-dependent. Importantly, if symmetry restrictions are relaxed, then the energy barrier for constriction is dramatically lowered and the membrane buckles at lower values of forcing parameters. Our simulations also show that constriction due to helical proteins further reduces the energy barrier for neck formation when compared to cylindrical proteins. These studies establish that despite different molecular mechanisms of neck formation in cells, the mechanics of constriction naturally leads to a loss of symmetry that can lower the energy barrier to constriction.

11.
Mol Biol Cell ; 29(16): 2024-2035, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30044708

ABSTRACT

Curvature of biological membranes can be generated by a variety of molecular mechanisms including protein scaffolding, compositional heterogeneity, and cytoskeletal forces. These mechanisms have the net effect of generating tractions (force per unit length) on the bilayer that are translated into distinct shapes of the membrane. Here, we demonstrate how the local shape of the membrane can be used to infer the traction acting locally on the membrane. We show that buds and tubes, two common membrane deformations studied in trafficking processes, have different traction distributions along the membrane and that these tractions are specific to the molecular mechanism used to generate these shapes. Furthermore, we show that the magnitude of an axial force applied to the membrane as well as that of an effective line tension can be calculated from these tractions. Finally, we consider the sensitivity of these quantities with respect to uncertainties in material properties and follow with a discussion on sources of uncertainty in membrane shape.


Subject(s)
Cell Membrane/physiology , Stress, Mechanical , Biomechanical Phenomena , Cell Membrane/ultrastructure
12.
Proc Math Phys Eng Sci ; 470(2172): 20140463, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25484606

ABSTRACT

A continuum theory for lipid membranes is developed that accounts for mechanical interactions between lipid tilt and membrane shape. For planar membranes, a linear version of the theory is used to predict tilt variations similar to those observed in experiments and molecular dynamics simulations.

13.
Soft Matter ; 6: 4788-4799, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-23908673

ABSTRACT

Many cell types have the ability to move themselves by crawling on extra-cellular matrices. Although cell motility is governed by actin and myosin filament assembly, the pattern of the movement follows the physical properties of the network ensemble average. The first step of motility, cell spreading on matrix substrates, involves a transition from round cells in suspension to polarized cells on substrates. Here we show that the spreading dynamics on 2D surfaces can be described as a hydrodynamic process. In particular, we show that the transition from isotropic spreading at early time to anisotropic spreading is reminiscent of the fingering instability observed in many spreading fluids. During cell spreading, the main driving force is the polymerization of actin filaments that push the membrane forward. From the equilibrium between the membrane force and the cytoskeleton, we derive a first order expression of the polymerization stress that reproduces the observed behavior. Our model also allows an interpretation of the effects of pharmacological agents altering the polymerization of actin. In particular we describe the influence of Cytochalasin D on the nucleation of the fingering instability.

SELECTION OF CITATIONS
SEARCH DETAIL
...