Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 352(2): 291-304, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25472954

ABSTRACT

Estrogen interacts with estrogen receptors (ERs) to induce vasodilation, but the ER subtype and post-ER relaxation pathways are unclear. We tested if ER subtypes mediate distinct vasodilator and intracellular free Ca(2+) concentration ([Ca(2+)]i) responses via specific relaxation pathways in the endothelium and vascular smooth muscle (VSM). Pressurized mesenteric microvessels from female Sprague-Dawley rats were loaded with fura-2, and the changes in diameter and [Ca(2+)]i in response to 17ß-estradiol (E2) (all ERs), PPT (4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]-tris-phenol) (ERα), diarylpropionitrile (DPN) (ERß), and G1 [(±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro:3H-cyclopenta(c)quinolin-8-yl]-ethanon] (GPR30) were measured. In microvessels preconstricted with phenylephrine, ER agonists caused relaxation and decrease in [Ca(2+)]i that were with E2 = PPT > DPN > G1, suggesting that E2-induced vasodilation involves ERα > ERß > GPR30. Acetylcholine caused vasodilation and decreased [Ca(2+)]i, which were abolished by endothelium removal or treatment with the nitric oxide synthase blocker Nω-nitro-l-arginine methyl ester (L-NAME) and the K(+) channel blockers tetraethylammonium (nonspecific) or apamin (small conductance Ca(2+)-activated K(+) channel) plus TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole) (intermediate conductance Ca(2+)-activated K(+) channel), suggesting endothelium-derived hyperpolarizing factor-dependent activation of KCa channels. E2-, PPT-, DPN-, and G1-induced vasodilation and decreased [Ca(2+)]i were not blocked by L-NAME, TEA, apamin plus TRAM-34, iberiotoxin (large conductance Ca(2+)- and voltage-activated K(+) channel), 4-aminopyridine (voltage-dependent K(+) channel), glibenclamide (ATP-sensitive K(+) channel), or endothelium removal, suggesting an endothelium- and K(+) channel-independent mechanism. In endothelium-denuded vessels preconstricted with phenylephrine, high KCl, or the Ca(2+) channel activator Bay K 8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester), ER agonist-induced relaxation and decreased [Ca(2+)]i were with E2 = PPT > DPN > G1 and not inhibited by the guanylate cyclase inhibitor ODQ [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], and showed a similar relationship between decreased [Ca(2+)]i and vasorelaxation, supporting direct effects on Ca(2+) entry in VSM. Immunohistochemistry revealed ERα, ERß, and GPR30 mainly in the vessel media and VSM. Thus, in mesenteric microvessels, ER subtypes mediate distinct vasodilation and decreased [Ca(2+)]i (ERα > ERß > GPR30) through endothelium- and K(+) channel-independent inhibition of Ca(2+) entry mechanisms of VSM contraction.


Subject(s)
Calcium/metabolism , Endothelium, Vascular/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estrogens/pharmacology , Mesenteric Arteries/metabolism , Microvessels/metabolism , Animals , Endothelium, Vascular/drug effects , Estrogen Receptor alpha/agonists , Estrogen Receptor beta/agonists , Estrus/metabolism , Female , In Vitro Techniques , Mesenteric Arteries/drug effects , Microvessels/drug effects , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Rats, Sprague-Dawley , Vasodilation/drug effects , Vasodilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...