Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Conserv Dent ; 21(6): 618-621, 2018.
Article in English | MEDLINE | ID: mdl-30546206

ABSTRACT

AIM: The aim of this study was to evaluate the shear bond strength (SBS) of self-adhering flowable composites on the dentinal surface prepared with carbide and diamond burs. MATERIALS AND METHODS: A total of 64 extracted mandibular molars were mounted on acrylic resin blocks, and the coronal part of the dentin was exposed and polished. Then, they were divided into Group 1 and Group 2 for carbide and diamond bur preparation, respectively. Two teeth in each group were evaluated under scanning electron microscope, ×500, to view the surface changes following the bur preparation. The remaining teeth were subdivided into Groups A, B, and C to be restored with Constic, Dyad™-flow, and Tetric N Flow composites, respectively. Then, the specimens were stored in distilled water at 37°C for 24 h, and then subjected to universal testing machine to evaluate the SBS and viewed under light stereomicroscope to evaluate the type of failure. STATISTICAL ANALYSIS: SPSS version 22 (IBM Corp) for Windows was used for statistical analysis. The values were subjected to ANOVA followed by Bonferroni post hoc analysis. The values between the groups were analyzed using Student's unpaired t-test. RESULTS: Statistically significant differences in the SBS values were seen between Groups A and C (P < 0.001) and Groups B and C (P < 0.001). Statistically significant differences were seen in SBS values of Dyad-flow (Group B) (P < 0.004) and Tetric N flow (P < 0.007) for surfaces prepared with carbide and diamond burs. CONCLUSION: It was concluded that the SBS of Tetric-N Flow was higher than that of the experimental groups of Constic and Dyad-flow. Dentinal surface preparation with carbide bur resulted in higher SBS for Tetric N Flow and Dyad-flow but not for Constic.

SELECTION OF CITATIONS
SEARCH DETAIL
...