Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
NMR Biomed ; 36(11): e5002, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37439129

ABSTRACT

The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1 + uniformity, power efficiency, and/or specific absorption rate efficiency. B1 + homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.


Subject(s)
Cervical Cord , Adult , Humans , Cervical Cord/diagnostic imaging , Phantoms, Imaging , Equipment Design , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio
2.
Behav Neurosci ; 132(6): 561-572, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30359065

ABSTRACT

Cognitive and emotional functions are supported by the coordinated activity of a distributed network of brain regions. This coordinated activity may be disrupted by psychosocial stress, resulting in the dysfunction of cognitive and emotional processes. Graph theory is a mathematical approach to assess coordinated brain activity that can estimate the efficiency of information flow and determine the centrality of brain regions within a larger distributed neural network. However, limited research has applied graph-theory techniques to the study of stress. Advancing our understanding of the impact stress has on global brain networks may provide new insight into factors that influence individual differences in stress susceptibility. Therefore, the present study examined the brain connectivity of participants that completed the Montreal Imaging Stress Task (Goodman et al., 2016; Wheelock et al., 2016). Salivary cortisol, heart rate, skin conductance response, and self-reported stress served as indices of stress, and trait anxiety served as an index of participant's disposition toward negative affectivity. Psychosocial stress was associated with a decrease in the efficiency of the flow of information within the brain. Further, the centrality of brain regions that mediate emotion regulation processes (i.e., hippocampus, ventral prefrontal cortex, and cingulate cortex) decreased during stress exposure. Interestingly, individual differences in cortisol reactivity were negatively correlated with the efficiency of information flow within this network, whereas cortisol reactivity was positively correlated with the centrality of the amygdala within the network. These findings suggest that stress reduces the efficiency of information transfer and leaves the function of brain regions that regulate the stress response vulnerable to disruption. (PsycINFO Database Record (c) 2018 APA, all rights reserved).


Subject(s)
Brain/physiopathology , Social Behavior , Stress, Psychological/physiopathology , Adolescent , Anxiety/diagnostic imaging , Anxiety/physiopathology , Brain/diagnostic imaging , Brain Mapping , Disease Susceptibility/diagnostic imaging , Disease Susceptibility/physiopathology , Female , Galvanic Skin Response , Heart Rate , Humans , Hydrocortisone/metabolism , Individuality , Magnetic Resonance Imaging , Male , Mathematical Concepts , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Saliva/metabolism , Stress, Psychological/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...