Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 454: 139619, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38811285

ABSTRACT

In this study, we developed a hydrogel from cross-linked keratin and chitosan (KC) to remove patulin (PAT) from apple juice. We explored the potential of incorporating Lactobacillus rhamnoses into the KC hydrogel (KC-LR) and tested its effectiveness in removing PAT from simulated juice solutions and real apple juice. The KC hydrogel was developed through a dynamic disulfide cross-linking reaction. This cross-linked hydrogel network provided excellent stability for the probiotic cells, achieving 99.9 % immobilization efficiency. In simulated juice with 25 mg/L PAT, the KC and KC-LR hydrogels showed removal efficiencies of 85.2 % and 97.68 %, respectively, using 15 mg mL-1 of the prepared hydrogel at a temperature of 25 °C for 6 h. The KC and KC-LR hydrogels achieved 76.3 % and 83.6 % removal efficiencies in real apple juice systems, respectively. Notably, the encapsulated probiotics did not negatively impact the juice quality and demonstrated reusability for up to five cycles of the PAT removal process.


Subject(s)
Chitosan , Fruit and Vegetable Juices , Hydrogels , Keratins , Lacticaseibacillus rhamnosus , Malus , Patulin , Chitosan/chemistry , Malus/chemistry , Fruit and Vegetable Juices/analysis , Lacticaseibacillus rhamnosus/chemistry , Hydrogels/chemistry , Patulin/chemistry , Patulin/isolation & purification , Keratins/chemistry , Keratins/isolation & purification , Probiotics/chemistry , Food Contamination/analysis
2.
Food Chem ; 369: 130983, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34500208

ABSTRACT

In this study, date syrup waste extract (DSWE) (15 wt%) and different content of silver doped sepiolite hybrid (Ag-Sep, 0.25-3 wt%) were incorporated into gelatin matrix to develop a series of active composite packaging films. Incorporating 2 wt% of Ag-Sep increased the modulus of blend film by 98% compared to unmodified gelatin/DSWE blend film. The active gelatin composite film exhibited superior active compounds migration to aqueous food simulants. Besides, Ag-Sep provided a tortuous pathway to the composite film, resulting in high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition efficiency (91%) and slow-release kinetics of active compounds to the food simulant. The Ag-Sep hybrid was improved the antimicrobial property of the gelatin/DSWE blend film against both gram-negative and gram-positive microbes. Thus, this study demonstrated that the Ag-Sep hybrid exhibits significant properties in the active gelatin composite films, implying that this hybrid could be an effective additive for various active packaging films.


Subject(s)
Food Packaging , Gelatin , Magnesium Silicates , Plant Extracts , Silver
3.
Food Chem ; 355: 129631, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33799252

ABSTRACT

In this work, date-fruit syrup waste extract (DSWE) was used as an antioxidant additive to develop active gelatin films with enhanced food preservation properties. The effect of DSWE content (5, 10, 15, and 25 wt%) on the mechanical, physical, and antioxidant properties of the gelatin films were analyzed. Total phenolic content and antioxidant assay analysis revealed that the active compounds in blend films are highly migrated to the aqueous phase than the fatty medium. In the canola oil stability studies, gelatin/25 wt% DSWE film immersed oil sample exhibited low peroxide (POV) and p-anisidine (PV) values of 28.6 and 7.1, respectively, compared to the control oil (POV = 41.7 and PV = 13.1) in the air atmosphere and 45 °C for 30 days. Totox values of canola oil samples were decreased as a function of DSWE content in the films, indicating that polyphenols in DSWE are significantly resistant to oil's lipid oxidation.


Subject(s)
Antioxidants/pharmacology , Gelatin/chemistry , Phoeniceae/chemistry , Antioxidants/analysis , Oxidation-Reduction , Plant Extracts/chemistry , Polyphenols/chemistry , Rapeseed Oil/analysis
4.
ACS Omega ; 5(42): 27083-27093, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33134668

ABSTRACT

In this study, the effect of accelerated ultraviolet (UV) aging on the properties of polypropylene (PP) as well as its blend with PP-graft-maleic anhydride (PP-g-MA) and composite with amine-functionalized mullite nanofibers (AMNF) was compared. Solid-state NMR exhibited some changes in the macromolecular chain structure after aging, whereas the formation of degradation products was confirmed through Fourier transform infrared (FTIR) spectroscopy. The aged composite was observed to exhibit the least increment in the crystallinity from X-ray and differential scanning calorimetry (DSC) analyses (0.3 and 0.5%, compared to 9.7 and 10.4%, respectively, for PP) owing to the stability of its amorphous phase against degradation. Similar resistance toward degradation was also confirmed by thermogravimetric analysis (TGA). The surface morphology of the materials also exhibited the lowest extent of surface embrittlement as well as a small number of shallow cracks in the case of a-PP/PP-g-MA/AMNF composite. The aged composite had a much higher impact strength of 14.9 kJ m-2 compared to 2.5 kJ m-2 for aged PP, thus exhibiting its stability against degradation owing to a synergistic combination of the filler and compatibilizer. The optimal performance of the composite was further confirmed through the least extent of reduction in the tensile strength and elongation at break. These findings demonstrate the superior performance of AMNF-reinforced PP composite over PP for outdoor applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...