Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 29(22): 4613-4626, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37725576

ABSTRACT

PURPOSE: Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) or lymphoblastic lymphoma (T-LBL) have limited therapeutic options. Clinical use of genomic profiling provides an opportunity to identify targetable alterations to inform therapy. EXPERIMENTAL DESIGN: We describe a cohort of 14 pediatric patients with relapsed or refractory T-ALL enrolled on the Leukemia Precision-based Therapy (LEAP) Consortium trial (NCT02670525) and a patient with T-LBL, discovering alterations in platelet-derived growth factor receptor-α (PDGFRA) in 3 of these patients. We identified a novel mutation in PDGFRA, p.D842N, and used an integrated structural modeling and molecular biology approach to characterize mutations at D842 to guide therapeutic targeting. We conducted a preclinical study of avapritinib in a mouse patient-derived xenograft (PDX) model of FIP1L1-PDGFRA and PDGFRA p.D842N leukemia. RESULTS: Two patients with T-ALL in the LEAP cohort (14%) had targetable genomic alterations affecting PDGFRA, a FIP1-like 1 protein/PDGFRA (FIP1L1-PDGFRA) fusion and a novel mutation in PDGFRA, p.D842N. The D842N mutation resulted in PDGFRA activation and sensitivity to tested PDGFRA inhibitors. In a T-ALL PDX model, avapritinib treatment led to decreased leukemia burden, significantly prolonged survival, and even cured a subset of mice. Avapritinib treatment was well tolerated and yielded clinical benefit in a patient with refractory T-ALL. CONCLUSIONS: Refractory T-ALL has not been fully characterized. Alterations in PDGFRA or other targetable kinases may inform therapy for patients with refractory T-ALL who otherwise have limited treatment options. Clinical genomic profiling, in real time, is needed for fully informed therapeutic decision making.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Mutation , Receptor Protein-Tyrosine Kinases/genetics , T-Lymphocytes
2.
Biochemistry ; 61(20): 2165-2176, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36161872

ABSTRACT

Cysteine side chains can exist in distinct oxidation states depending on the pH and redox potential of the environment, and cysteine oxidation plays important yet complex regulatory roles. Compared with the effects of post-translational modifications such as phosphorylation, the effects of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid on protein structure and function remain relatively poorly characterized. We present an analysis of the role of cysteine reactivity as a regulatory factor in proteins, emphasizing the interplay between electrostatics and redox potential as key determinants of the resulting oxidation state. A review of current computational approaches suggests underdeveloped areas of research for studying cysteine reactivity through molecular simulations.


Subject(s)
Cysteine , Proteins , Biophysics , Cysteine/chemistry , Oxidation-Reduction , Proteins/chemistry , Sulfenic Acids , Sulfonic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...