Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124291

ABSTRACT

To improve the biocompatibility and bioactivity of biodegradable iron-based materials, nanostructured surfaces formed by metal oxides offer a promising strategy for surface functionalization. To explore this potential, iron oxide nanotubes were synthesized on pure iron (Fe) using an anodic oxidation process (50 V-30 min, using an ethylene glycol solution containing 0.3% NH4F and 3% H2O, at a speed of 100 rpm). A nanotube layer composed mainly of α-Fe2O3 with diameters between 60 and 70 nm was obtained. The effect of the Fe-oxide nanotube layer on cell viability and morphology was evaluated by in vitro studies using a human osteosarcoma cell line (SaOs-2 cells). The results showed that the presence of this layer did not harm the viability or morphology of the cells. Furthermore, cells cultured on anodized surfaces showed higher metabolic activity than those on non-anodized surfaces. This research suggests that growing a layer of Fe oxide nanotubes on pure Fe is a promising method for functionalizing and improving the cytocompatibility of iron substrates. This opens up new opportunities for biomedical applications, including the development of cardiovascular stents or osteosynthesis implants.

2.
Biointerphases ; 16(5): 051003, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34634913

ABSTRACT

Cell adhesion and growth over prostheses are strongly influenced by the adsorption and conformation of adhesive proteins from blood and extracellular matrix, such as fibronectin. This key behavior can be possibly exploited to develop a prosthetic ligament based on the surface bioactivation of biodegradable materials. In this work, surface functionalization was performed by grafting poly(sodium 4-styrene sulfonate) on polyethylene terephthalate and polycaprolactone using a thermal surface-initiated atom transfer radical polymerization grafting technique. The morphology and mechanical properties of the adsorbed fibronectin in the presence of albumin were studied by atomic force microscopy. The morphology of fibronectin on two kinds of polyester surfaces was similar. However, the study results showed a remarkable conformation change of fibronectin when adsorbed onto the nongrafted or grafted surface, leading to an increase in cell adhesion and organization in the second case. This research provided evidence of the relationship between the morphology change of fibronectin to the enhancement of the cell adhesion and spreading on the grafted surface of polyester.


Subject(s)
Fibronectins , Polyesters , Adsorption , Cell Adhesion , Microscopy, Atomic Force , Polystyrenes , Surface Properties
3.
Sci Rep ; 11(1): 4258, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608601

ABSTRACT

Polyethylene terephthalate (PET) fibers and fabrics are widely used for medical device applications such as vascular and anterior cruciate ligament prostheses. Several years ago, we began functionalizing PET fabrics using anionic polymers to enhance their biocompatibility, cell adhesion, proliferation and functional performance as PET ligament prostheses. Polymer functionalization followed a grafting-from process from virgin PET surfaces subject to spin-finish oil additive removal under Soxhlet extraction to remove residual fiber manufacturing oil. Nevertheless, with increasing time from manufacture, PET fabrics stored without a spin finish removal step exhibited degradation of spin finish oil, leading to (1) incomplete surface cleaning, and (2) PET surface degradation. Moreover, oxidizing agents present in the residual degraded oil prevented reliable functionalization of the prosthesis fibers in these PET fabrics. This study compares effects of PET fabric/spin finish oil storage on PET fabric anionic polymer functionalization across two PET fabric ligament storage groups: (1) 2- and 10- year old ligaments, and (2) 26-year old ligaments. Strong interactions between degraded spin finish oil and PET fiber surfaces after long storage times were demonstrated via extraction yield; oil chemistry changed assessed by spectral analysis. Polymer grafting/functionalization efficiency on stored PET fabrics was correlated using atomic force microscopy, including fiber surface roughness and relationships between grafting degree and surface Young's modulus. New PET fabric Young's modulus significantly decreased by anionic polymer functionalization (to 96%, grafting degree 1.6 µmol/g) and to reduced modulus and efficiency (29%) for 10 years storage fabric (grafting degree ~ 1 µmol/g). As fiber spin finish is mandatory in biomedically applicable fiber fabrication, assessing effects of spin finish oil on commercial polymer fabrics after longer storage under various conditions (UV light, temperature) is necessary to understand possible impacts on fiber degradation and surface functionalization.

4.
Biointerphases ; 15(6): 061006, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203213

ABSTRACT

Polycaprolactone (PCL) is a widely used biodegradable polyester for tissue engineering applications when long-term degradation is preferred. In this article, we focused on the analysis of the hydrolytic degradation of virgin and bioactive poly(sodium styrene sulfonate) (pNaSS) functionalized PCL surfaces under simulated physiological conditions (phosphate buffer saline at 25 and 37 °C) for up to 120 weeks with the aim of applying bioactive PCL for ligament tissue engineering. Techniques used to characterize the bulk and surface degradation indicated that PCL was hydrolyzed by a bulk degradation mode with an accelerated degradation-three times increased rate constant-for pNaSS grafted PCL at 37 °C when compared to virgin PCL at 25 °C. The observed degradation mechanism is due to the pNaSS grafting process (oxidation and radical polymerization), which accelerated the degradation until 48 weeks, when a steady state is reached. The PCL surface was altered by pNaSS grafting, introducing hydrophilic sulfonate groups that increase the swelling and smoothing of the surface, which facilitated the degradation. After 48 weeks, pNaSS was largely removed from the surface, and the degradation of virgin and pNaSS grafted surfaces was similar. The cell response of primary fibroblast cells from sheep ligament was consistent with the surface analysis results: a better initial spreading of cells on pNaSS surfaces when compared to virgin surfaces and a tendency to become similar with degradation time. It is worthy to note that during the extended degradation process the surfaces were able to continue inducing better cell spreading and preserve their cell phenotype as shown by collagen gene expressions.


Subject(s)
Polyesters/chemistry , Polymers/metabolism , Sulfonic Acids/chemistry , Animals , Buffers , Cell Adhesion/drug effects , Cell Survival/drug effects , Collagen/genetics , Collagen/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Hydrolysis , Polymers/chemistry , Polymers/pharmacology , Sheep , Spectroscopy, Fourier Transform Infrared , Surface Properties , Tissue Engineering
5.
J Appl Biomater Funct Mater ; 16(4): 222-229, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29991307

ABSTRACT

In this study, ordered and uniform TiO2 nanotubular structures were obtained on the surface of the Ti15Mo alloy by anodic oxidation. The amorphous state of TiO2 nanotubes formed under different anodization conditions was investigated. Crystallization of TiO2 into anatase phase occurs during annealing at temperatures of around 400°C, whereas anatase to rutile transformation starts around 500°C and is completed at 800°C. Phase transformations in annealed samples led to morphological changes of tubular nanostructures, suggesting that the oxide layer formed at the nanotube/substrate interface serves as nucleation sites for more stable phases of TiO2. The proliferation of fibroblasts cells under annealing conditions of 450°C, and of untreated samples (control group), was evaluated after 1, 4, and 7 days in cell culture using fluorescence microscopy images. A gradual increase in the number and size of cells was observed, indicating a non-toxic alloy. There was also better surface coverage on anodized samples compared with the untreated group; as well as increased development of the cytoskeleton in samples after anodization. The results of this study showed that the growth of TiO2 nanotubular structures associated with annealing allow better cell adhesion on the Ti15Mo alloy surface.


Subject(s)
Alloys/chemistry , Molybdenum/chemistry , Nanotubes/chemistry , Titanium/chemistry , Cell Adhesion , Cell Line , Crystallization , Electrodes , Fibroblasts/cytology , Humans , Oxidation-Reduction , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL