Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 9(2): 29, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348439

ABSTRACT

Mitogen-activated protein kinase (MAPK) pathway inhibitors show promise in treating melanoma, but are unsuccessful in achieving long-term remission. Concordant with clinical data, BRAFV600E melanoma cells eliminate glycolysis upon inhibition of BRAFV600E or MEK with the targeted therapies Vemurafenib or Trametinib, respectively. Consequently, exposure to these therapies reprograms cellular metabolism to increase mitochondrial respiration and restrain cell death commitment. As the inner mitochondrial membrane (IMM) is sub-organellar site of oxidative phosphorylation (OXPHOS), and the outer mitochondrial membrane (OMM) is the major site of anti-apoptotic BCL-2 protein function, we hypothesized that suppressing these critical mitochondrial membrane functions would be a rational approach to maximize the pro-apoptotic effect of MAPK inhibition. Here, we demonstrate that disruption of OXPHOS with the mitochondria-specific protonophore BAM15 promotes the mitochondrial pathway of apoptosis only when oncogenic MAPK signaling is inhibited. Based on RNA-sequencing analyses of nevi and primary melanoma samples, increased pro-apoptotic BCL-2 family expression positively correlates with high-risk disease suggesting a highly active anti-apoptotic BCL-2 protein repertoire likely contributes to worse outcome. Indeed, combined inhibition of the anti-apoptotic BCL-2 repertoire with BH3-mimetics, OXPHOS, and oncogenic MAPK signaling induces fulminant apoptosis and eliminates clonogenic survival. Altogether, these data suggest that dual suppression of IMM and OMM functions may unleash the normally inadequate pro-apoptotic effects of oncogenic MAPK inhibition to eradicate cancer cells, thus preventing the development of resistant disease, and ultimately, supporting long-term remission.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Mitochondrial Membranes/metabolism , Apoptosis , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...