Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Mem Inst Oswaldo Cruz ; 113(12): e180323, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30540021

ABSTRACT

BACKGROUND The transmission routes for American cutaneous leishmaniasis (ACL) are in flux, so studies examining its transmission in humans, mammalian hosts, and sand fly vectors are urgently needed. OBJECTIVES The aim of this work was understand the epidemiological cycles of Leishmania spp., which causes ACL in the Andean Region of Venezuela, by identifying the Leishmania and the sand fly species involved in human and dog infections. METHODS Thirty-one biopsies from patients in Mérida and Táchira states with suspected ACL were studied by both parasitological tests (cultures and hamster inoculation) and a molecular test [Internal transcribed spacer 1 (ITS1) nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)]. We also conducted a survey to detect Leishmania infection in dogs (Immunifluorescence antibody test and ITS1 nested PCR-RFLP) and sand flies (ITS1 nested PCR-RFLP) from El Carrizal, a highly endemic focus of ACL in Venezuela. FINDINGS Three different Leishmania species were identified in the clinical samples from humans (Leishmania braziliensis, L. guyanensis, and L. mexicana) and dogs (L. guyanensis and L. mexicana). The predominant sand fly species found were those from the Verrucarum group (infected with L. mexicana) and Lutzomyia migonei (infected with L. guyanensis and L. mexicana). MAIN CONCLUSIONS We show that Lu. migonei may be the putative vector in two ACL epidemiological cycles, involving L. guyanensis and L. mexicana. We also report for the first time the presence of L. guyanensis in domestic animals.


Subject(s)
DNA, Ribosomal Spacer/genetics , Insect Vectors/parasitology , Leishmania braziliensis/genetics , Leishmania guyanensis/genetics , Leishmania mexicana/genetics , Leishmaniasis, Cutaneous/parasitology , Psychodidae/parasitology , Animals , Dogs , Female , Humans , Leishmania braziliensis/isolation & purification , Leishmania guyanensis/isolation & purification , Leishmania mexicana/isolation & purification , Leishmaniasis, Cutaneous/transmission , Molecular Typing , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Venezuela
2.
Mem. Inst. Oswaldo Cruz ; 113(12): e180323, 2018. tab, graf
Article in English | LILACS | ID: biblio-976234

ABSTRACT

BACKGROUND The transmission routes for American cutaneous leishmaniasis (ACL) are in flux, so studies examining its transmission in humans, mammalian hosts, and sand fly vectors are urgently needed. OBJECTIVES The aim of this work was understand the epidemiological cycles of Leishmania spp., which causes ACL in the Andean Region of Venezuela, by identifying the Leishmania and the sand fly species involved in human and dog infections. METHODS Thirty-one biopsies from patients in Mérida and Táchira states with suspected ACL were studied by both parasitological tests (cultures and hamster inoculation) and a molecular test [Internal transcribed spacer 1 (ITS1) nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)]. We also conducted a survey to detect Leishmania infection in dogs (Immunifluorescence antibody test and ITS1 nested PCR-RFLP) and sand flies (ITS1 nested PCR-RFLP) from El Carrizal, a highly endemic focus of ACL in Venezuela. FINDINGS Three different Leishmania species were identified in the clinical samples from humans (Leishmania braziliensis, L. guyanensis, and L. mexicana) and dogs (L. guyanensis and L. mexicana). The predominant sand fly species found were those from the Verrucarum group (infected with L. mexicana) and Lutzomyia migonei (infected with L. guyanensis and L. mexicana). MAIN CONCLUSIONS We show that Lu. migonei may be the putative vector in two ACL epidemiological cycles, involving L. guyanensis and L. mexicana. We also report for the first time the presence of L. guyanensis in domestic animals.


Subject(s)
Humans , Leishmania , Leishmania/parasitology , Polymorphism, Restriction Fragment Length , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...