Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 259: 124469, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37019006

ABSTRACT

In this work, a vortex-assisted dispersive liquid-liquid microextraction method, using an ionic liquid as the extracting solvent was developed, for the simultaneous analysis of three UV filters in different water samples. The extracting and dispersive solvents were selected in a univariate way. Then, the parameters such as the volume of the extracting and dispersive solvents, pH and ionic strength were evaluated using a full experimental design 24, followed by Doehlert matrix. The optimized method consisted of 50 µL of extracting solvent (1-octyl-3-methylimidazolium hexafluorophosphate), 700 µL of dispersive solvent (acetonitrile) and pH of 4.5. When combined with high-performance liquid chromatography, the method limit of detection ranged from 0.3 to 0.6 µg L-1, enrichment factors between 81 and 101%, and the relative standard deviation between 5.8 and 10.0%. The developed method demonstrated effectiveness in concentrating UV filters in both river and seawater samples, being a simple and efficient option for this type of analysis.

2.
Anal Bioanal Chem ; 413(7): 1851-1859, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33469709

ABSTRACT

In this work, a liquid-liquid microextraction methodology using solidified floating organic drop (SFODME) was combined with liquid chromatography and UV/Vis detection to determine non-steroidal anti-inflammatory drugs (NSAIDs) naproxen (NPX), diclofenac (DCF), and mefenamic acid (MFN) in tap water, surface water, and seawater samples. Parameters that can influence the efficiency of the process were evaluated, such as the type and volume of the extractor and dispersive solvents, effect of pH, agitation type, and ionic strength. The optimized method showed low detection limits (0.09 to 0.25 µg L-1), satisfactory recovery rates (90 to 116%), and enrichment factors in the range between 149 and 199. SFODME showed simplicity, low cost, speed, and high concentration capacity of the analytes under study. Its use in real samples did not demonstrate a matrix effect that would compromise the effectiveness of the method, being possible to apply it successfully in water samples with different characteristics.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Chromatography, High Pressure Liquid/methods , Liquid Phase Microextraction/methods , Chemistry, Organic/methods , Diclofenac/analysis , Dodecanol/analysis , Hydrogen-Ion Concentration , Ions , Limit of Detection , Linear Models , Mefenamic Acid/analysis , Methanol , Naproxen/analysis , Osmolar Concentration , Pharmaceutical Preparations/analysis , Reproducibility of Results , Seawater , Solvents , Temperature , Water/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...