Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 52(2): 531-540, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29198105

ABSTRACT

Snowpacks in the Alberta Oil Sands Region (AOSR) of Canada contain elevated loadings of methylmercury (MeHg; a neurotoxin that biomagnifies through foodwebs) due to oil sands related activities. At sites ranging from 0 to 134 km from the major AOSR upgrading facilities, we examined sources of MeHg by quantifying potential rates of MeHg production in snowpacks and melted snow using mercury stable isotope tracer experiments, as well as quantifying concentrations of MeHg on particles in snowpacks (pMeHg). At four sites, methylation rate constants were low in snowpacks (km = 0.001-0.004 d-1) and nondetectable in melted snow, except at one site (km = 0.0007 d-1). The ratio of methylation to demethylation varied between 0.3 and 1.5, suggesting that the two processes are in balance and that in situ production is unlikely an important net source of MeHg to AOSR snowpacks. pMeHg concentrations increased linearly with distance from the upgraders (R2 = 0.71, p < 0.0001); however, snowpack total particle and pMeHg loadings decreased exponentially over this same distance (R2 = 0.49, p = 0.0002; R2 = 0.56, p < 0.0001). Thus, at near-field sites, total MeHg loadings in snowpacks were high due to high particle loadings, even though particles originating from industrial activities were not MeHg rich compared to those at remote sites. More research is required to identify the industrial sources of snowpack particles in the AOSR.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Alberta , Environmental Monitoring , Methylation , Oil and Gas Fields
2.
Environ Pollut ; 223: 665-675, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28190686

ABSTRACT

Little is known about pollution in urban snow and how aerosol and gaseous air pollutants interact with the urban snowpack. Here we investigate interactions of exhaust pollution with snow at low ambient temperature using fresh snow in a temperature-controlled chamber. A gasoline-powered engine from a modern light duty vehicle generated the exhaust and was operated in homogeneous and stratified engine regimes. We determined that, within a timescale of 30 min, snow takes up from the exhaust a large mass of organic pollutants and aerosol particles, which were observed by electron microscopy, mass spectrometry and aerosol sizers. Specifically, the concentration of total organic carbon in the exposed snow increased from 0.948 ± 0.009 to 1.828 ± 0.001 mg/L (homogeneous engine regime) and from 0.275 ± 0.005 to 0.514 ± 0.008 mg/L (stratified engine regime). The concentrations of benzene, toluene and 13 out of 16 measured polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, benz[a]anthracene, chrysene and benzo[a]pyrene in snow increased upon exposure from near the detection limit to 0.529 ± 0.058, 1.840 ± 0.200, 0.176 ± 0.020, 0.020 ± 0.005, 0.025 ± 0.005 and 0.028 ± 0.005 ng/kg, respectively, for the homogeneous regime. After contact with snow, 50-400 nm particles were present with higher relative abundance compared to the smaller nanoparticles (<50 nm), for the homogeneous regime. The lowering of temperature from 25 ± 1 °C to (-8) - (-10) ± 1 °C decreased the median mode diameter of the exhaust aerosol particles from 69 nm to 57 nm (p < 0.1) and addition of snow to 51 nm (p < 0.1) for the stratified regime, but increased it from 20 nm to 27 nm (p < 0.1) for the homogeneous regime. Future studies should focus on cycling of exhaust-derived pollutants between the atmosphere and cryosphere. The role of the effects we discovered should be evaluated as part of assessment of pollutant loads and exposures in regions with a defined winter season.


Subject(s)
Air Pollutants/chemistry , Environmental Monitoring , Gases/chemistry , Gasoline , Particulate Matter/chemistry , Snow/chemistry , Vehicle Emissions/analysis , Aerosols/analysis , Air Pollutants/analysis , Atmosphere/chemistry , Canada , Cold Temperature , Particulate Matter/analysis , Seasons , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...