Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ScientificWorldJournal ; 2013: 167834, 2013.
Article in English | MEDLINE | ID: mdl-24453802

ABSTRACT

We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.


Subject(s)
Agave/drug effects , Cadmium/chemistry , Germination/drug effects , Metals, Heavy/chemistry , Seedlings/drug effects , Seeds/metabolism , Adsorption , Biomass , Ions , Metallothionein/chemistry , Metals/chemistry , Soil Pollutants/chemistry
2.
Biotechnol Bioeng ; 102(1): 91-9, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18846546

ABSTRACT

This study reports the feasibility of recovering metal precipitates from a synthetic acidic wastewater containing ethanol, Fe, Zn, and Cd at an organic loading rate of 2.5 g COD/L-day and a COD to sulfate ratio of 0.8 in a sulfate reducing down-flow fluidized bed reactor. The metals were added at increasing loading rates: Fe from 104 to 320 mg/L-day, Zn from 20 to 220 mg/L-day, and Cd from 5 to 20 mg/L-day. The maximum COD and sulfate removals attained were 54% and 41%, respectively. The biofilm reactor was operated at pH as low as 5.0 with stable performance, and no adverse effect over COD consumption or sulfide production was observed. The metals precipitation efficiencies obtained for Fe, Zn, and Cd exceeded 99.7%, 99.3%, and 99.4%, respectively. The total recovered precipitate was estimated to be 90% of the theoretical mass expected as metal sulfides. The precipitate was mainly recovered from the bottom of the reactor and the equalizer. The analysis of the precipitates showed the presence of pyrite (FeS2), sphalerite (ZnS) and greenockite (CdS); no metal hydroxides or carbonates in crystalline phases were identified. This study is the first in reporting the feasibility to recover metal sulfides separated from the biomass in a sulfate reducing process in one stage.


Subject(s)
Bioreactors , Metals/metabolism , Sulfides/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biofilms , Chemical Precipitation , Ethanol/metabolism , Hydrogen-Ion Concentration , Iron/metabolism , Zinc Compounds/metabolism
3.
Water Res ; 42(13): 3473-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18514757

ABSTRACT

We report the production of a modified carbon by heat treating bean husk (Phaseolus vulgaris) at 270 degrees C in Ar, followed by chemical activation using HNO(3). The material was studied using thermogravimetric analysis (TGA), infrared spectroscopy (IRS), high-resolution transmission electron microscopy (HRTEM), elemental mapping, energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction and scanning electron microscopy (SEM). Cd(2+) sorption studies with this material were carried out at different concentrations. It was found that cadmium (II) is effectively removed by the modified material obtained from bean husk (180 mg/g). The sorption mechanism is discussed in terms of the activated surface properties. A relationship between the oxygen content and sorption was found in this novel material. Commercial activated carbon (AC) (F400) was used for comparison.


Subject(s)
Cadmium/chemistry , Cadmium/isolation & purification , Carbon/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Solutions , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...