Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 74(11): 6037-45, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16923788

ABSTRACT

Mycobacterium ulcerans and Mycobacterium marinum are closely related pathogens which share an aquatic environment. The pathogenesis of these organisms in humans is limited by their inability to grow above 35 degrees C. M. marinum causes systemic disease in fish but produces localized skin infections in humans. M. ulcerans causes Buruli ulcer, a severe human skin lesion. At the molecular level, M. ulcerans is distinguished from M. marinum by the presence of a virulence plasmid which encodes a macrolide toxin, mycolactone, as well as by hundreds of insertion sequences, particularly IS2404. There has been a global increase in reports of fish mycobacteriosis. An unusual clade of M. marinum has been reported from fish in the Red and Mediterranean Seas and a new mycobacterial species, Mycobacterium pseudoshottsii, has been cultured from fish in the Chesapeake Bay, United States. We have discovered that both groups of fish pathogens produce a unique mycolactone toxin, mycolactone F. Mycolactone F is the smallest mycolactone (molecular weight, 700) yet identified. The core lactone structure of mycolactone F is identical to that of M. ulcerans mycolactones, but a unique side chain structure is present. Mycolactone F produces apoptosis and necrosis on cultured cells but is less potent than M. ulcerans mycolactones. Both groups of fish pathogens contain IS2404. In contrast to M. ulcerans and conventional M. marinum, mycolactone F-producing mycobacteria are incapable of growth at above 30 degrees C. This fact is likely to limit their virulence for humans. However, such isolates may provide a reservoir for horizontal transfer of the mycolactone plasmid in aquatic environments.


Subject(s)
Bacterial Toxins/biosynthesis , Bacterial Toxins/toxicity , Fatty Acids, Unsaturated/biosynthesis , Fishes/microbiology , Mycobacterium Infections/metabolism , Mycobacterium/pathogenicity , Plasmids/genetics , Animals , Apoptosis/immunology , Bacterial Toxins/genetics , Bacterial Toxins/isolation & purification , Cell Line , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/toxicity , Fibroblasts/immunology , Fibroblasts/microbiology , Fibroblasts/pathology , Humans , Lactones/chemistry , Lactones/toxicity , Macrolides , Mice , Molecular Sequence Data , Mycobacterium/genetics , Mycobacterium/isolation & purification , Mycobacterium Infections/epidemiology , Necrosis , Virulence/genetics
2.
Infect Immun ; 73(6): 3307-12, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15908356

ABSTRACT

Mycobacterium ulcerans, the causative agent of Buruli ulcer, produces a macrolide toxin, mycolactone A/B, which is thought to play a major role in virulence. A disease similar to Buruli ulcer recently appeared in United States frog colonies following importation of the West African frog, Xenopus tropicalis. The taxonomic position of the frog pathogen has not been fully elucidated, but this organism, tentatively designated Mycobacterium liflandii, is closely related to M. ulcerans and Mycobacterium marinum, and as further evidence is gathered, it will most likely be considered a subspecies of one of these species. In this paper we show that M. liflandii produces a novel plasmid-encoded mycolactone, mycolactone E. M. liflandii contains all of the genes in the mycolactone cluster with the exception of that encoding CYP140A2, a putative p450 monooxygenase. Although the core lactone structure is conserved in mycolactone E, the fatty acid side chain differs from that of mycolactone A/B in the number of hydroxyl groups and double bonds. The cytopathic phenotype of mycolactone E is identical to that of mycolactone A/B, although it is less potent. To further characterize the relationship between M. liflandii and M. ulcerans, strains were analyzed for the presence of the RD1 region genes, esxA (ESAT-6) and esxB (CFP-10). The M. ulcerans genome strain has a deletion in RD1 and lacks these genes. The results of these studies show that M. liflandii contains both esxA and esxB.


Subject(s)
Bacterial Toxins/isolation & purification , Mycobacterium ulcerans/pathogenicity , Nontuberculous Mycobacteria/pathogenicity , Xenopus/microbiology , Animals , Antigens, Bacterial/genetics , Bacterial Proteins , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Base Sequence , Macrolides , Mice , Molecular Sequence Data , Peptide Fragments/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...