Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 83(5): 1778-88, 2015 May.
Article in English | MEDLINE | ID: mdl-25690095

ABSTRACT

The interaction of environmental bacteria with unicellular eukaryotes is generally considered a major driving force for the evolution of intracellular pathogens, allowing them to survive and replicate in phagocytic cells of vertebrate hosts. To test this hypothesis on a genome-wide level, we determined for the intracellular pathogen Mycobacterium marinum whether it uses conserved strategies to exploit host cells from both protozoan and vertebrate origin. Using transposon-directed insertion site sequencing (TraDIS), we determined differences in genetic requirements for survival and replication in phagocytic cells of organisms from different kingdoms. In line with the general hypothesis, we identified a number of general virulence mechanisms, including the type VII protein secretion system ESX-1, biosynthesis of polyketide lipids, and utilization of sterols. However, we were also able to show that M. marinum contains an even larger set of host-specific virulence determinants, including proteins involved in the modification of surface glycolipids and, surprisingly, the auxiliary proteins of the ESX-1 system. Several of these factors were in fact counterproductive in other hosts. Therefore, M. marinum contains different sets of virulence factors that are tailored for specific hosts. Our data imply that although amoebae could function as a training ground for intracellular pathogens, they do not fully prepare pathogens for crossing species barriers.


Subject(s)
Genome, Bacterial , Microbial Viability , Mutagenesis, Insertional , Mycobacterium marinum/genetics , Mycobacterium marinum/physiology , Virulence Factors/metabolism , Acanthamoeba castellanii/microbiology , Animals , DNA Transposable Elements , Dictyostelium/microbiology , Humans , Mycobacterium marinum/growth & development , Phagocytes/microbiology , Virulence , Virulence Factors/genetics
3.
Proc Natl Acad Sci U S A ; 110(2): 531-6, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23267069

ABSTRACT

Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.


Subject(s)
Adaptation, Biological/physiology , Culture Techniques/methods , Erythrocytes/parasitology , Plasmodium knowlesi/growth & development , Plasmodium knowlesi/genetics , Adaptation, Biological/genetics , Animals , Base Sequence , Cloning, Molecular , Cryopreservation , DNA Primers/genetics , Genotype , Humans , Macaca fascicularis , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity
4.
Bioinformatics ; 28(1): 127-9, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22088842

ABSTRACT

MOTIVATION: Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms. In this work, we present one such poly(A) motif prediction method based on properties of human genomic DNA sequence surrounding a poly(A) motif. These properties include thermodynamic, physico-chemical and statistical characteristics. For predictions, we developed Artificial Neural Network and Random Forest models. These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity and specificity and furthermore provide a consistent level of accuracy for 12 poly(A) motif variants. CONTACT: vladimir.bajic@kaust.edu.sa SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Neural Networks, Computer , Poly A/analysis , Genome, Human , Humans , Internet , Poly A/genetics , Sensitivity and Specificity , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...