Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 48(2): 435-445, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30539948

ABSTRACT

Three pairs of asymmetric dicarboxylato derivatives based on the cisplatin and oxaliplatin-like skeletons have been synthesized de novo or re-synthesized. The axial ligands consist of one medium-chain fatty acid (MCFA), namely clofibrate (i.e. 2-(p-chlorophenoxy)-2-methylpropionic acid, CA), heptanoate (HA) or octanoate (OA), respectively, and an inactive acetato ligand that imparts acceptable water solubility to such conjugates. Stability tests provided evidence for the partial formation of two hydrolyzed products, corresponding to two monoaqua diastereomers derived from the substitution of an equatorial chlorido ligand with a water molecule. The complexes have been tested on three different colon cancer cell lines having different histological history, and also on the cisplatin-sensitive A2780 ovarian cancer cell line for comparison. This allowed the evaluation not only of the increase in activity on passing from Pt(ii) to Pt(iv) derivatives, but also the selectivity towards colon cancer cells brought about by the cyclohexane-1R,2R-diamine carrier ligand.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Organoplatinum Compounds/chemical synthesis , Prodrugs/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colonic Neoplasms/pathology , Drug Stability , Humans , Inhibitory Concentration 50 , Molecular Structure , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Solubility
2.
Dalton Trans ; 46(31): 10246-10254, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28737785

ABSTRACT

Oxidation of [Pt(II)Cl(terpy)]+ (terpy = 2,2':6',2''-terpyridine) has been attempted with several oxidizing agents and under different experimental conditions in order to obtain a Pt(iv) complex suitable for the conjugation to nanovectors to be used in drug delivery targeting for anticancer therapy. The best compromise in terms of yield and purity of the final complex was obtained by microwave-assisted reaction at 70 °C in 50% aqueous H2O2 for 2 h. Under these conditions the quantitative formation of [Pt(IV)Cl(OH)2(terpy)]+ was observed. The subsequent synthetic steps were, (i) functionalization of [Pt(IV)Cl(OH)2(terpy)]+ in the axial position with succinic anhydride to obtain [Pt(IV)Cl(OH)(succinato)(terpy)]+ and (ii) reaction of the latter with nonporous silica nanoparticles (SNPs) with an external shell containing primary amino groups to obtain a nanovector able to transport the Pt(iv) antitumor prodrug in the form of a conjugate Pt-SNP. Finally, the antiproliferative activity and cell accumulation of [Pt(II)Cl(terpy)]+, [Pt(IV)Cl(OH)2(terpy)]+, and the Pt-SNP conjugate were measured on three cancer cell lines. Despite highly effective accumulation of Pt-SNP in cells, a modest increase in activity was observed with respect to the molecular species. Further experiments showed that the Pt-SNP conjugate can release [Pt(II)Cl(terpy)]+ upon reduction, but this metabolite may undergo hydrolysis, and the resulting aquo complex could coordinate once again the free amino groups of the SNPs. In the resulting tetraamine form, the Pt(ii) complex conjugated to the SNPs cannot completely perform its antiproliferative activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...