Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446092

ABSTRACT

Despite the high incidence and burden of stroke, biological biomarkers are not used routinely in clinical practice to diagnose, determine progression, or prognosticate outcomes of acute ischemic stroke (AIS). Because of its direct interface with neural tissue, cerebrospinal fluid (CSF) is a potentially valuable source for biomarker development. This systematic review was conducted using three databases. All trials investigating clinical and preclinical models for CSF biomarkers for AIS diagnosis, prognostication, and severity grading were included, yielding 22 human trials and five animal studies for analysis. In total, 21 biomarkers and other multiomic proteomic markers were identified. S100B, inflammatory markers (including tumor necrosis factor-alpha and interleukin 6), and free fatty acids were the most frequently studied biomarkers. The review showed that CSF is an effective medium for biomarker acquisition for AIS. Although CSF is not routinely clinically obtained, a potential benefit of CSF studies is identifying valuable biomarkers from the pathophysiologic microenvironment that ultimately inform optimization of targeted low-abundance assays from peripheral biofluid samples (e.g., plasma). Several important catabolic and anabolic markers can serve as effective measures of diagnosis, etiology identification, prognostication, and severity grading. Trials with large cohorts studying the efficacy of biomarkers in altering clinical management are still needed.


Subject(s)
Ischemic Stroke , Stroke , Humans , Ischemic Stroke/diagnosis , Proteomics , Stroke/diagnosis , Biomarkers , Fatty Acids, Nonesterified
2.
Crit Care Med ; 51(2): e45-e59, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36661464

ABSTRACT

OBJECTIVES: Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN: Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING: Preclinical laboratory. SUBJECTS: Adult male C57BL/6J mice (n = 54). INTERVENTIONS: Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 µg/kg)/high-dose glibenclamide (10 µg/mouse). Seven-day subcutaneous infusions (0.4 µg/hr) were continued. MEASUREMENTS AND MAIN RESULTS: Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS: High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.


Subject(s)
Brain Contusion , Brain Edema , Brain Injuries, Traumatic , Brain Injuries , Animals , Male , Mice , Bayes Theorem , Brain Contusion/complications , Brain Contusion/drug therapy , Brain Edema/diagnostic imaging , Brain Edema/drug therapy , Brain Edema/etiology , Brain Injuries/drug therapy , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/complications , Disease Models, Animal , Endophenotypes , Glyburide/pharmacology , Glyburide/therapeutic use , Magnetic Resonance Imaging , Mice, Inbred C57BL
3.
Int J Mol Sci ; 22(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34769328

ABSTRACT

Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.


Subject(s)
Brain Injuries/pathology , Central Nervous System Diseases/pathology , Sulfonylurea Receptors/metabolism , Animals , Brain Injuries/etiology , Brain Injuries/metabolism , Central Nervous System Diseases/etiology , Central Nervous System Diseases/metabolism , Humans
4.
Expert Opin Ther Targets ; 25(11): 917-938, 2021 11.
Article in English | MEDLINE | ID: mdl-34844502

ABSTRACT

INTRODUCTION: Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED: We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION: Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.


Subject(s)
Brain Edema , TRPM Cation Channels , Brain Edema/therapy , Glyburide/pharmacology , Humans , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
5.
J Hum Reprod Sci ; 14(2): 156-161, 2021.
Article in English | MEDLINE | ID: mdl-34316231

ABSTRACT

BACKGROUND: Implantation is the rate-limiting step in the success of both intrauterine Insemination (IUI) and in vitro fertilization cycles. Numerous interventions that target various local signals have been tried to improve the implantation and clinical pregnancy rate (CPR). The most significant of these signals is human chorionic gonadotropin (hCG) which acts as immunomodulator and improves implantation by decidualization of the endometrial stromal cells, trophoblast invasion, proliferation of uterine natural killer cells, stimulation of endometrial angiogenesis, and maintenance of progesterone secretion by the corpus luteum. AIM: The aim of the study is to evaluate the effect of intrauterine hCG administration before IUI on CPR. SETTINGS AND DESIGN: A prospective parallel randomized control study was done from September 2017 to February 2019. MATERIALS AND METHODS: A total of 200 eligible women planned for IUI were randomly divided just before IUI into 2 groups. A computer-generated randomization list with block size of 10 with 1:1 allocation was used to randomize the patients. Experimental group received 0.5 ml containing 500 IU hCG, on the other hand control group received 0.5 ml of normal saline 2-3 min before IUI in single sitting. The main outcomes were CPR, miscarriage rate, and ongoing pregnancy rate. STATISTICAL ANALYSIS: It was performed using statistical software version SPSS 17.0. RESULTS: Patient's demographic and baseline characteristics were comparable in both the groups. CPR in experimental group was significantly high compared to control group (26% vs. 9%, P = 0.002). Ongoing pregnancy rate was also significantly higher in experimental group (23%) compared to control group (7%) (P = 0.003). No significant difference in miscarriage rate was seen between the two groups. No cases of ectopic pregnancy, ovarian hyperstimulation syndrome, or multiple pregnancy were reported. CONCLUSION: Intrauterine hCG administration is a simple procedure that can be used to improve pregnancy outcome in IUI cycles.

6.
Cytokine Growth Factor Rev ; 57: 64-72, 2021 02.
Article in English | MEDLINE | ID: mdl-32900600

ABSTRACT

Fibrosis leads to destruction of organ architecture accompanied by chronic inflammation and loss of function. Fibrosis affects nearly every organ in the body and accounts for ∼45% of total deaths worldwide. Over the past decade, tremendous progress has been made in understanding the basic mechanisms leading to organ fibrosis. However, we are limited with therapeutic options and there is a significant need to develop highly effective anti-fibrotic therapies. Recent advances in sequencing technologies have advanced the burgeoning field of epigenetics towards molecular understanding at a higher resolution. Here we provide a comprehensive review of the recent advances in chromatin regulatory processes, specifically DNA methylation, post-translational modification of histones, and chromatin remodeling complexes in kidney, liver and lung fibrosis. Although this research field is young, we discuss new strategies for potential therapeutic interventions for treating organ fibrosis.


Subject(s)
Chromatin , DNA Methylation , Epigenesis, Genetic , Fibrosis , Histones/metabolism , Humans , Protein Processing, Post-Translational
7.
World J Microbiol Biotechnol ; 34(8): 120, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30022302

ABSTRACT

Advancement in proteome analytical techniques and the development of protein databases have been helping to understand the physiology and subtle molecular mechanisms behind biofilm formation in bacteria. This review is to highlight how the evolving proteomic approaches have revealed fundamental molecular processes underlying the formation and regulation of bacterial biofilms. Based on the survey of research reports available on differential expression of proteins in biofilms of bacterial from wide range of environments, four important cellular processes viz. metabolism, motility, transport and stress response that contribute to formation of bacterial biofilms are discussed. This review might answer how proteins related to these cellular processes contribute significantly in stabilizing biofilms of different bacteria in diverse environmental conditions.


Subject(s)
Bacteria/metabolism , Biofilms/growth & development , Proteome/metabolism , Proteomics/methods , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Environment
8.
Article in English | MEDLINE | ID: mdl-26413121

ABSTRACT

Fragile X mental retardation protein (FMRP) is a neuronal translational repressor and has been implicated in learning, memory, and cognition. However, the role of Bacopa monnieri extract (CDRI-08) in enhancing cognitive abilities in hypoxia-induced memory impairment via Fmr-1 gene expression is not known. Here, we have studied effects of CDRI-08 on the expression of Fmr-1 gene in the hippocampus of well validated cobalt chloride (CoCl2)-induced hypoxia mimetic mice and analyzed the data with alterations in spatial memory. Results obtained from Morris water maze test suggest that CoCl2 treatment causes severe loss of spatial memory and CDRI-08 is capable of reversing it towards that in the normal control mice. Our semiquantitative RT-PCR, Western blot, and immunofluorescence microscopic data reveal that CoCl2-induced hypoxia significantly upregulates the expression of Hif-1α and downregulates the Fmr-1 expression in the hippocampus, respectively. Further, CDRI-08 administration reverses the memory loss and this is correlated with significant downregulation of Hif-1α and upregulation of Fmr-1 expression. Our data are novel and may provide mechanisms of hypoxia-induced impairments in the spatial memory and action of CDRI-08 in the recovery of hypoxia led memory impairment involving Fmr-1 gene encoded protein called FMRP.

9.
J Food Sci Technol ; 52(4): 2434-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25825547

ABSTRACT

Detection of milk fat adulteration with foreign fats/oils continues to be a challenge for the dairy industry as well as food testing laboratories, especially in the present scenario of rampant adulteration using the scientific knowledge by unscrupulous persons involved in the trade. In the present investigation a rapid reversed-phase thin layer chromatographic (RP-TLC) protocol was standardized to ascertain the purity of milk fat. RP-TLC protocol did not show any false positive results in the genuine ghee (clarified butter fat) samples of known origin. Adulteration of ghee with coconut oil up to 7. 5 %, soybean oil, sunflower oil and groundnut oil up to 1 %, while, designer oil up to 2 % level could be detected using the standardized RP-TLC protocol. The protocol standardized is rapid and convenient to use.

10.
Neurochem Res ; 39(9): 1787-96, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25052430

ABSTRACT

Hypoxia-induced oxidative stress is one of the major hallmark reasons underlying brain dysfunction. In the present manuscript, we have used CoCl2-induced hypoxic mice to investigate alterations in the activities of chief antioxidative stress enzymes- superoxide dismutase (SOD) and catalase (CAT) and expression of their genes Sod1 and Cat in the cerebral cortex as this model has not been routinely used for carrying out such study. Hypoxia mimetic mice model was accordingly developed by oral CoCl2 administration to mice and validated by analyzing alterations in the expression of the hypoxia inducible factor gene Hif-1α and its immediate responsive genes. Our Western blot data demonstrated that a dose of 40 mg/kg BW of CoCl2 was able to generate hypoxia like condition in mice in which Hif-1α and its immediate responsive genes-glutamate transporter-1 (Slc2a1) and erythropoietin (Epo) expression were up regulated. Our in-gel assay data indicated that SOD and CAT activities significantly declined and it was associated with significant down regulation of Sod1 and Epo expression as evident from our semi quantitative RT-PCR and Western blot data, which might be correlated with up regulation of Hif-1α expression in the cerebral cortex of the CoCl2-treated hypoxic mice. Our findings suggest that CoCl2-induced hypoxic mouse model is useful for studying alterations in the anti oxidative enzymes and biochemical/molecular/neurobiological analysis of hypoxia-induced alterations in brain function.


Subject(s)
Catalase/metabolism , Cerebral Cortex/metabolism , Cobalt/pharmacology , Down-Regulation , Hypoxia/chemically induced , Superoxide Dismutase/metabolism , Animals , Blotting, Western , Cerebral Cortex/enzymology , Dose-Response Relationship, Drug , Hypoxia/metabolism , Male , Mice , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...