Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38482620

ABSTRACT

BACKGROUND: Indole-triazole conjugates have emerged as promising candidates for new drug development. Their distinctive structural characteristics, coupled with a wide array of biological activities, render them a captivating and promising field of research for the creation of novel pharmaceutical agents. OBJECTIVE: This study aimed to synthesize indole-triazole conjugates to investigate the influence of various substituents on the functional characteristics of indole-triazole hybrids. It also aimed to study the binding modes of new hybrids with the DNA Gyrase using molecular docking studies. METHODS: A new set of indole-triazole hybrids was synthesized and characterized using various physicochemical and spectral analyses. All hybrids underwent in-silico pharmacokinetic prediction studies. The antimicrobial efficacy of the hybrids was assessed using tube dilution and agar diffusion methods. Additionally, the in-vitro antioxidant activity of synthesized compounds was determined using the 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging assay. Furthermore, in silico molecular docking studies were performed to enhance our comprehension of how the synthesized compounds interact at the molecular level with DNA gyrase. RESULTS: Pharmacokinetic predictions of synthesized hybrids indicated favourable pharmacokinetic profiles, and none of the compounds violated the Lipinski rule of five. Notably, compound 6, featuring a cyclohexanol substituent, demonstrated superior antimicrobial and antioxidant activity (EC50 value = 14.23 µmol). Molecular docking studies further supported the in vitro antioxidant and antimicrobial findings, revealing that all compounds adeptly fit into the binding pocket of DNA Gyrase and engaged in interactions with crucial amino acid residues. CONCLUSION: In summary, our research underscores the efficacy of molecular hybridization in shaping the physicochemical, pharmacokinetic, and biological characteristics of novel indole-triazole derivatives.

2.
Behav Neurol ; 2023: 8825358, 2023.
Article in English | MEDLINE | ID: mdl-37868743

ABSTRACT

Cannabidiol (CBD), derived from Cannabis sativa, has gained remarkable attention for its potential therapeutic applications. This thorough analysis explores the increasing significance of CBD in treating neurological conditions including epilepsy, multiple sclerosis, Parkinson's disease, and Alzheimer's disease, which present major healthcare concerns on a worldwide scale. Despite the lack of available therapies, CBD has been shown to possess a variety of pharmacological effects in preclinical and clinical studies, making it an intriguing competitor. This review brings together the most recent findings on the endocannabinoid and neurotransmitter systems, as well as anti-inflammatory pathways, that underlie CBD's modes of action. Synthesized efficacy and safety assessments for a range of neurological illnesses are included, covering human trials, in vitro studies, and animal models. The investigation includes how CBD could protect neurons, control neuroinflammation, fend off oxidative stress, and manage neuronal excitability. This study emphasizes existing clinical studies and future possibilities in CBD research, addressing research issues such as regulatory complications and contradicting results, and advocates for further investigation of therapeutic efficacy and ideal dose methodologies. By emphasizing CBD's potential to improve patient well-being, this investigation presents a revised viewpoint on its suitability as a therapeutic intervention for neurological illnesses.


Subject(s)
Alzheimer Disease , Cannabidiol , Epilepsy , Animals , Humans , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Epilepsy/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...