Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Microbiol ; 304(5-6): 620-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24863528

ABSTRACT

Mycobacterium avium ssp. paratuberculosis (MAP) is an obligate intracellular pathogen. It causes chronic intestinal inflammation in ruminants known as Johne's disease and is associated with human Crohn's disease. Furthermore, association of MAP with other autoimmune diseases, such as type-1 diabetes, has been established in patients from Sardinia (Italy) which is a MAP endemic and genetically isolated region. Due to largest livestock population and consequently high MAP prevalence amidst a very high diabetes incidence in India, we sought to test this association on a limited number of patient samples from Hyderabad. Our results of ELISA with MAP lysate and MAP-specific protein MAP3738c as well as PCR/real-time PCR of MAP-specific sequences IS900 and/or f57 indicated that, in contrast to Sardinian diabetic patients, MAP infection in blood is not discerned in diabetic patients in Hyderabad. The association of a mycobacterial trigger with diabetes therefore could well be a population-specific phenomenon, highly dependent on genetic repertoire and the environment of susceptible populations. However, a larger study is needed in order to confirm this.


Subject(s)
Diabetes Complications , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Paratuberculosis/epidemiology , Paratuberculosis/microbiology , Adult , Animals , Enzyme-Linked Immunosorbent Assay , Female , Humans , India/epidemiology , Italy , Male , Polymerase Chain Reaction
2.
Mol Biosyst ; 9(11): 2932-41, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24056978

ABSTRACT

Diabetes mellitus is a multifactorial disease and its incidence is increasing worldwide. Among the two types of diabetes, type-2 accounts for about 90% of all diabetic cases, whereas type-1 or juvenile diabetes is less prevalent and presents with humoral immune responses against some of the autoantigens. We attempted to test whether the sera of type-1 diabetes patients cross-react with mycobacterial heat shock protein 65 (Hsp65) due to postulated epitope homologies between mycobacterial Hsp65 and an important autoantigen of type-1 diabetes, glutamic acid decarboxylase-65 (GAD65). In our study, we used either recombinant mycobacterial Hsp65 protein or synthetic peptides corresponding to some of the potential epitopes of mycobacterial Hsp65 that are shared with GAD65 or human Hsp60, and a control peptide sourced from mycobacterial Hsp65 which is not shared with GAD65, Hsp60 and other autoantigens of type-1 diabetes. The indirect ELISA results indicated that both type-1 diabetes and type-2 diabetes sera cross-react with conserved mycobacterial Hsp65 peptides and recombinant mycobacterial Hsp65 protein but do not do so with the control peptide. Our results suggest that cross-reactivity of mycobacterial Hsp65 with autoantibodies of diabetes sera could be due to the presence of significantly conserved peptides between mycobacterial Hsp65 and human Hsp60 rather than between mycobacterial Hsp65 and GAD65. The treatment of human peripheral blood mononuclear cells (PBMCs) with recombinant mycobacterial Hsp65 protein or the synthetic peptides resulted in a significant increase in the secretion of cytokines such as IL-1ß, IL-8, IL-6, TNF-α and IL-10. Taken together, these findings point towards a dual role for mycobacterial Hsp65: in inducing autoimmunity and in inflammation, the two cardinal features of diabetes mellitus.


Subject(s)
Autoantigens/immunology , Bacterial Proteins/immunology , Chaperonin 60/immunology , Cytokines/metabolism , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Amino Acid Sequence , Autoantigens/blood , Bacterial Proteins/chemistry , Chaperonin 60/chemistry , Cross Reactions/immunology , Cytokines/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Epitopes/chemistry , Epitopes/immunology , Female , Humans , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Models, Immunological , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides/immunology , Protein Conformation , Sequence Alignment
3.
Cytokine ; 64(1): 258-64, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23819907

ABSTRACT

Mycobacterium tuberculosis, the cause of tuberculosis in humans, is present approximately in one third of the world's population, mostly in a dormant state. The proteins encoded by the dormancy survival regulon (DosR regulon) are mainly responsible for survival of the bacilli in a latent form. To maintain latency, mycobacteria orchestrate a balanced interplay of different cytokines secreted by immune cells during the granulomatous stage. The function of most of the DosR regulon proteins of M. tuberculosis is unknown. In this study, we have shown that one of the DosR regulon proteins, DATIN, encoded by the gene Rv0079, can stimulate macrophages and peripheral blood mononuclear cells (PBMC) to secrete important cytokines that may be significant in granuloma formation and its maintenance. The expression level of DATIN in Mycobacterium bovis BCG was found to be upregulated in pH stress and microaerobic conditions. Computational modeling, docking and simulation study suggested that DATIN might interact with TLR2. This was further confirmed through the interaction of recombinant DATIN with TLR2 expressed by HEK293 cells. When in vitro differentiated THP-1 cells were treated with recombinant DATIN, increased secretion of TNF-α, IL-1ß and IL-8 was observed in a dose dependent manner. When differentiated THP-1 cells were infected with a modified BCG strain that overexpressed DATIN, augmented secretions of TNF-α, IL-1ß and IL-8 were observed as compared to a reference BCG strain containing empty vector. Similarly, human PBMCs when infected with M. bovis BCG that overexpressed DATIN, upregulated secretion of proinflammatory cytokines IFN-γ, TNF-α, IL-1ß and IL-8. The cytokine profiles dissected herein point to a possible role of DATIN in maintenance of latency with the help of the proinflammatory responses.


Subject(s)
Bacterial Proteins/metabolism , Macrophages/immunology , Toll-Like Receptor 2/metabolism , Cell Line , HEK293 Cells , Humans , Inflammation/immunology , Interferon-gamma/metabolism , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Macrophages/metabolism , Mycobacterium bovis/immunology , Mycobacterium bovis/metabolism , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Gut Pathog ; 4(1): 10, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-23006537

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is a zoonotic pathogen, a very slow growing bacterium which is difficult to isolate and passage in conventional laboratory culture. Although its association with Johne's disease or paratuberculosis of cattle is well established, it has been only putatively linked to Crohn's disease in humans. Further, MAP has been recently suggested to be a trigger for other autoimmune diseases such as type-1 diabetes mellitus (T1DM). Recently, some studies have indicated that exposure to MAP is associated with elevated levels of antibodies against MAP lysate although the exact mechanism and significance of the same remains unclear. Further, the cytokine profiles relevant in MAP associated diseases of humans and their exact role in the pathophysiology are not clearly known. We performed in vitro cytokine analyses after exposing different cultured human cells to the whole cell lysate of MAP and found that MAP lysate induces secretion of cytokines IL-1ß, IL-6, IL-8, IL-10 and TNF-α by human peripheral blood mononuclear cells (PBMCs). Also, it induces secretion of IL-8 by cultured human stomach adenocarcinoma cells (AGS) and PANC-1(human pancreatic carcinoma cell line) cells. We also found that MAP lysate induced cytotoxicity in PANC-1cells. Collectively, these results provide a much needed base-line data set of cytokines broadly signifying a MAP induced cellular response by human cells.

5.
PLoS One ; 7(6): e38709, 2012.
Article in English | MEDLINE | ID: mdl-22719925

ABSTRACT

Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon) is chiefly responsible for encoding dormancy related functions of M. tuberculosis. We describe functional characterization of an important gene of DosR regulon, Rv0079, which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079, possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG) strains that overexpressed Rv0079. Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a 'dormancy associated translation inhibitor' or DATIN.


Subject(s)
Bacterial Proteins/genetics , Genes, Bacterial , Mycobacterium tuberculosis/genetics , Protein Kinases/genetics , Regulon , Base Sequence , Blotting, Western , DNA Primers , DNA-Binding Proteins , Models, Molecular
6.
PLoS One ; 6(11): e27584, 2011.
Article in English | MEDLINE | ID: mdl-22114678

ABSTRACT

Traditionally, the distribution of the Mycobacterium tuberculosis genotypes in India has been characterized by widespread prevalence of ancestral lineages (TbD1+ strains and variants) in the south and the modern forms (TbD1(-) CAS and variants) predominating in the north of India. The pattern was, however, not clearly known in the south-central region such as Hyderabad and the rest of the state of Andhra Pradesh where the prevalence of both tuberculosis (TB) and human immunodeficiency virus (HIV) infection is one of the highest in the country; this area has been the hotspot of TB vaccine trials. Spoligotyping of 101 clinical isolates obtained from Hyderabad and rural Andhra Pradesh confirmed the occurrence of major genogroups such as the ancestral (or the TbD1+ type or the East African Indian (EAI) type), the Central Asian (CAS) or Delhi type and the Beijing lineage in Andhra Pradesh. Sixty five different spoligotype patterns were observed for the isolates included in this study; these were further analyzed based on specific genetic signatures/mutations. It was found that the major genogroups, CAS and "ancestral," were almost equally prevalent in our collection but followed a north-south compartmentalization as was also reported previously. However, we observed a significant presence of MANU lineage in south Andhra Pradesh, which was earlier reported to be overwhelmingly present in Mumbai. This study portrays genotypic diversity of M. tuberculosis from the Indian state of Andhra Pradesh and provides a much needed snapshot of the strain diversity that will be helpful in devising effective TB control programs in this part of the world.


Subject(s)
Genetic Variation , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial , Genotype , Humans , India/epidemiology , Mycobacterium tuberculosis/isolation & purification , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Tuberculosis/epidemiology , Tuberculosis/transmission
7.
Gut Pathog ; 2(1): 1, 2010 Mar 29.
Article in English | MEDLINE | ID: mdl-20350307

ABSTRACT

Type 1 diabetes mellitus (T1DM) is a multifactorial autoimmune disease in which the insulin producing beta cell population is destroyed by the infiltrated T lymphocytes. Even though the exact cause of T1DM is yet to be ascertained, varying degree of genetic susceptibility and environmental factors have been linked to the disease progress and outcome. Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate zoonotic pathogen that causes chronic infection of intestines in ruminants, the Johne's disease. MAP that can even survive pasteurization and chlorination has also been implicated to cause similar type of enteritis in humans called Crohn's disease. With the increasing recognition of the link between MAP and Crohn's disease, it has been postulated that MAP is an occult antigen which besides Crohn's could as well be thought to trigger T1DM. Epitope homologies between mycobacterial proteins (Hsp 65) and pancreatic glutamic acid decarboxylase (GAD 65) and infant nutrition studies implicate MAP as one of the triggers for T1DM. PCR and ELISA analyses in diabetic patients from Sardinia suggest that MAP acts as a possible trigger for T1DM. Systematic mechanistic insights are needed to prove this link. Unfortunately, no easy animal model(s) or in-vitro systems are available to decipher the complex immunological network that is triggered in MAP infection leading to T1DM.

SELECTION OF CITATIONS
SEARCH DETAIL
...