Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoscience ; 3(9-10): 275-287, 2016.
Article in English | MEDLINE | ID: mdl-28050578

ABSTRACT

High frequency quantitative ultrasound techniques were investigated to characterize different forms of cell death in vitro. Suspension-grown acute myeloid leukemia cells were treated to cause apoptosis, oncosis, mitotic arrest, and heat-induced death. Samples were scanned with 20 and 40 MHz ultrasound and assessed histologically in terms of cellular structure. Frequency-domain analysis of 20 MHz ultrasound data demonstrated midband fit changes of 6.0 ± 0.7 dBr, 6.2 ± 1.8 dBr, 4.0 ± 1.0 dBr and -4.6 ± 1.7 dBr after 48-hour cisplatinum-induced apoptosis, 48-hour oncotic decay, 36-hour colchicine-induced mitotic arrest, and heat treatment compared to control, respectively. Trends from 40 MHz ultrasound were similar. Spectral slope changes obtained from 40 MHz ultrasound data were reflective of alterations in cell and nucleus size. Chromatin pyknosis or lysis trends suggested that the density of nuclear material may be responsible for observed changes in ultrasound backscatter. Flow cytometry analysis confirmed the modes of cell death and supported midband fit trends in ultrasound data. Scatterer-size and concentration estimates obtained from a fluid-filled sphere form factor model further corresponded with spectral analysis and histology. Results indicate quantitative ultrasound spectral analysis may be used for probing anti-cancer response and distinguishing various modes of cell death in vitro.

2.
Oncoscience ; 2(8): 716-26, 2015.
Article in English | MEDLINE | ID: mdl-26425663

ABSTRACT

Previous studies using high-frequency ultrasound have suggested that radiofrequency (RF) spectral analysis can be used to quantify changes in cell morphology to detect cell death response to therapy non-invasively. The study here investigated this at conventional-frequencies, frequently used in clinical settings. Spectral analysis was performed using ultrasound RF data collected with a clinical ultrasound platform. Acute myeloid leukemia (AML-5) cells were exposed to cisplatinum for 0-72 hours in vitro and prepared for ultrasound data collection. Preclinical in vivo experiments were also performed on AML-5 tumour-bearing mice receiving chemotherapy. The mid-band fit (MBF) spectral parameter demonstrated an increase of 4.4 ± 1.5 dBr for in vitro samples assessed 48 hours after treatment, a statistically significant change (p < 0.05) compared to control. Further, in vitro concentration-based analysis of a mixture of apoptotic and untreated cells indicated a mean change of 10.9 ± 2.4 dBr in MBF between 0% and 40% apoptotic cell mixtures. Similar effects were reproduced in vivo with an increase of 4.6 ± 0.3 dBr in MBF compared to control, for tumours with considerable apoptotic areas within histological samples. The alterations in the size of cells and nuclei corresponded well with changes measured in the quantitative ultrasound (QUS) parameters.

3.
Magn Reson Med ; 69(3): 734-48, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-22585554

ABSTRACT

Head motion artifacts are a major problem in functional MRI that limit its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and nonlinear spin-history artifacts; however, residual artifacts due to dynamic magnetic field nonuniformity may remain in the data. A recently developed correction technique, Phase Labeling for Additional Coordinate Encoding, can correct for absolute geometric distortion using only the complex image data from two echo planar images with slightly shifted k-space trajectories. An approach is presented that integrates Phase Labeling for Additional Coordinate Encoding into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an functional MRI finger tapping experiment with overt head motion to induce dynamic field nonuniformity. Experiments suggest that such integrated volume-by-volume corrections are very effective at artifact suppression, with potential to expand functional MRI applications.


Subject(s)
Artifacts , Brain Mapping/methods , Brain/physiology , Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Optical Devices , Photography/instrumentation , Adult , Computer Systems , Equipment Design , Equipment Failure Analysis , Humans , Male , Motion , Reproducibility of Results , Sensitivity and Specificity , Systems Integration , Young Adult
4.
Med Phys ; 38(8): 4634-46, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21928636

ABSTRACT

PURPOSE: Functional magnetic resonance imaging (fMRI) is limited by sensitivity to millimetre-scale head motion. Adaptive correction is a strategy to adjust the imaging plane in response to measured head motion, thereby suppressing motion artifacts. This strategy should correct for motion in all six degrees of freedom and also holds promise for through-plane motion that creates "spin-history" artifact that cannot easily be removed by postprocessing methods. Improved quantitative understanding of the MRI signal behavior associated with spin-history artifact would be useful for implementing adaptive correction robustly. METHODS: A numerical simulation was developed to predict MRI artifact signal amplitude in a single-slice for simple motions, implemented with and without adaptive correction, and compared with experiment by imaging a phantom at 3.0 T. Functional MRI was also performed of a human volunteer to illustrate adaptive correction in the presence of spin-history artifact. RESULTS: Good agreement was achieved between simulation and experimental results. Although time-averaged artifact signal amplitude was observed to correlate linearly with motion speed, artifact time-courses were nonlinearly related to motion waveforms. In addition, experimental results demonstrated effective adaptive correction of spin-history artifact when the phantom underwent complex motions. Adaptive correction during human fMRI suppressed spin-history artifacts and spurious activations associated with task-correlated motion. CONCLUSIONS: Overall, this work suggests that adaptive correction, especially when implemented with minimal lag between motion measurement and scan plane update, may help to expand the populations for which fMRI can be performed robustly.


Subject(s)
Magnetic Resonance Imaging/statistics & numerical data , Algorithms , Artifacts , Biophysical Phenomena , Brain/anatomy & histology , Brain/physiology , Brain Mapping/statistics & numerical data , Head Movements , Humans , Image Processing, Computer-Assisted/methods , Motion , Phantoms, Imaging , Young Adult
5.
Ultrasound Med Biol ; 36(9): 1546-58, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20800181

ABSTRACT

This study aims to explain the contribution of changes in cellular size variance (CSV) to increases in ultrasound-integrated backscatter (UIB) measured from cell samples undergoing cell death. A Monte Carlo algorithm was used to compare simulations of 2D distributions of cells, uniform (CSV = 0) versus heterogeneous (CSV > 0) and the same mean cellular size (M ). UIB increased in arrangements with heterogeneous cellular sizes from 3.6dB (M = 20 mum, CSV = 0 microm/CSV = 18 microm) to 5.6 dB (M =10 microm, CSV = 0 microm/CSV = 8 microm). Experimentally, UIB (10 to 30 MHz) was measured from cell samples of four tumor cell lines viable and undergoing cell death after radiotherapy and chemotherapy treatment. An increase of 3.8-7.5 dB (p < 0.001) in UIB was measured from three cell lines. No increase in UIB was measured from one cell line. An increase in CSV was found for all cell samples after cell death. The results suggest that an increase in CSV could have a significant contribution to the increases measured in UIB after cell death in cell samples exposed to anticancer therapies.


Subject(s)
Leukemia, Myeloid, Acute/diagnostic imaging , Ultrasonics , Algorithms , Antineoplastic Agents/therapeutic use , Cell Death , Cell Line, Tumor , Cell Size , Cells, Cultured , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/radiotherapy , Monte Carlo Method , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...