Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 26(Pt 4): 1073-1084, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274430

ABSTRACT

The SwissFEL soft X-ray free-electron laser (FEL) beamline Athos will be ready for user operation in 2021. Its design includes a novel layout of alternating magnetic chicanes and short undulator segments. Together with the APPLE X architecture of undulators, the Athos branch can be operated in different modes producing FEL beams with unique characteristics ranging from attosecond pulse length to high-power modes. Further space has been reserved for upgrades including modulators and an external seeding laser for better timing control. All of these schemes rely on state-of-the-art technologies described in this overview. The optical transport line distributing the FEL beam to the experimental stations was designed with the whole range of beam parameters in mind. Currently two experimental stations, one for condensed matter and quantum materials research and a second one for atomic, molecular and optical physics, chemical sciences and ultrafast single-particle imaging, are being laid out such that they can profit from the unique soft X-ray pulses produced in the Athos branch in an optimal way.

2.
Nat Commun ; 6: 7459, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26067922

ABSTRACT

Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 10(13) s(-1) is generated at 22.3 eV, with 5 × 10(-5) conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

3.
Proc Natl Acad Sci U S A ; 111(3): 912-7, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24395768

ABSTRACT

High harmonic light sources make it possible to access attosecond timescales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized; this is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep UV, which have not yet been synthesized. Here, we present a unique approach using attosecond vacuum UV pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born-Oppenheimer regime. By controlling the interfering pathways of electron wave packets in the excited neutral and singly ionized molecule, we unambiguously show that we can switch the excited electronic state on attosecond timescales, coherently guide the nuclear wave packets to dictate the way a neutral molecule vibrates, and steer and manipulate the ionization and dissociation channels. Furthermore, through advanced theory, we succeed in rigorously modeling multiscale electron and nuclear quantum control in a molecule. The observed richness and complexity of the dynamics, even in this very simplest of molecules, is both remarkable and daunting, and presents intriguing new possibilities for bridging the gap between attosecond physics and attochemistry.

4.
Phys Rev Lett ; 109(7): 073004, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-23006367

ABSTRACT

Using a simple model of strong-field ionization of atoms that generalizes the well-known 3-step model from 1D to 3D, we show that the experimental photoelectron angular distributions resulting from laser ionization of xenon and argon display prominent structures that correspond to electrons that pass by their parent ion more than once before strongly scattering. The shape of these structures can be associated with the specific number of times the electron is driven past its parent ion in the laser field before scattering. Furthermore, a careful analysis of the cutoff energy of the structures allows us to experimentally measure the distance between the electron and ion at the moment of tunnel ionization. This work provides new physical insight into how atoms ionize in strong laser fields and has implications for further efforts to extract atomic and molecular dynamics from strong-field physics.

5.
Science ; 322(5904): 1081-5, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-19008441

ABSTRACT

When an atom or molecule is ionized by an x-ray, highly excited states can be created that then decay, or autoionize, by ejecting a second electron from the ion. We found that autoionization after soft x-ray photoionization of molecular oxygen follows a complex multistep process. By interrupting the autoionization process with a short laser pulse, we showed that autoionization cannot occur until the internuclear separation of the fragments is greater than approximately 30 angstroms. As the ion and excited neutral atom separated, we directly observed the transformation of electronically bound states of the molecular ion into Feshbach resonances of the neutral oxygen atom that are characterized by both positive and negative binding energies. States with negative binding energies have not previously been predicted or observed in neutral atoms.

6.
Rev Sci Instrum ; 79(6): 063102, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18601392

ABSTRACT

We describe a momentum imaging setup for direct time-resolved studies of ionization-induced molecular dynamics. This system uses a tabletop ultrafast extreme-ultraviolet (EUV) light source based on high harmonic upconversion of a femtosecond laser. The high photon energy (around 42 eV) allows access to inner-valence states of a variety of small molecules via single photon excitation, while the sub--10-fs pulse duration makes it possible to follow the resulting dynamics in real time. To obtain a complete picture of molecular dynamics following EUV induced photofragmentation, we apply the versatile cold target recoil ion momentum spectroscopy reaction microscope technique, which makes use of coincident three-dimensional momentum imaging of fragments resulting from photoexcitation. This system is capable of pump-probe spectroscopy by using a combination of EUV and IR laser pulses with either beam as a pump or probe pulse. We report several experiments performed using this system.

7.
Science ; 317(5843): 1374-8, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17823349

ABSTRACT

The direct observation of molecular dynamics initiated by x-rays has been hindered to date by the lack of bright femtosecond sources of short-wavelength light. We used soft x-ray beams generated by high-harmonic upconversion of a femtosecond laser to photoionize a nitrogen molecule, creating highly excited molecular cations. A strong infrared pulse was then used to probe the ultrafast electronic and nuclear dynamics as the molecule exploded. We found that substantial fragmentation occurs through an electron-shakeup process, in which a second electron is simultaneously excited during the soft x-ray photoionization process. During fragmentation, the molecular potential seen by the electron changes rapidly from nearly spherically symmetric to a two-center molecular potential. Our approach can capture in real time and with angstrom resolution the influence of ionizing radiation on a range of molecular systems, probing dynamics that are inaccessible with the use of other techniques.

8.
Opt Express ; 14(23): 11468-76, 2006 Nov 13.
Article in English | MEDLINE | ID: mdl-19529565

ABSTRACT

It is demonstrated that the carrier-envelope (CE) phase of pulses from a high power ultrafast laser system with a grating-based stretcher and compressor can be stabilized to a root mean square (rms) value of 180 mrad over almost 2 hours, excluding a brief re-locking period. The stabilization was accomplished via feedback control of the grating separation in the stretcher. It shows that the long term CE phase stability of a grating based chirped pulse amplification system can be as good as that of lasers using a glass-block stretcher and a prism pair compressor. Moreover, by adjusting the grating separation to preset values, the relative CE phase could be locked to an arbitrary value in the range of 2pi. This method is better than using a pair of wedge plates to adjust the phase after the hollow-core fiber compressor. The CE phase stabilization after a hollow-core fiber compressor was confirmed by a CE-phase meter based on the measurement of the left-to-right asymmetry of electrons produced by above-threshold ionization.

SELECTION OF CITATIONS
SEARCH DETAIL
...