Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 257: 112593, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38754275

ABSTRACT

Four Ru(II) complexes (A2-A5) were synthesized from the reaction of coumarin Schiff base ligands (7da2-tsc, 7da3-mtsc, 7da4-etsc and 7da5-ptsc) with [RuHCl(CO)(PPh3)3]. The compounds were characterized by FT-IR, UV-Vis, 1H, 13C and 31P NMR, mass spectrometry and crystallographic analysis. Calf Thymus DNA (CT-DNA) binding studies revealed the intercalative mode of binding of the complexes with DNA. The results of Bovine serum albumin (BSA) binding studies established the interaction between BSA followed static quenching mechanism. The cytotoxic effects of the complexes and the ligands were evaluated against breast (MCF-7 and MDA-MB-231) and lung carcinoma cell lines (A549 and NCI-H460) using MTT assay. Complex A4 demonstrated potent cytotoxic effects on both breast and lung cancer cells. Furthermore, morphological observations and FACS analysis showed the decrease in cell density by complex A4 by induced morphological changes and apoptotic body formation and cell death in both breast and lung cancer cells. Moreover, the invertebrate model Caenorhabditis elegans was employed to assess the in vivo anticancer activity of compound A4. The findings indicated that the treatment with A4 reduced tumor development and significantly extended organismal lifespan by 64 % in the tumoral strain JK1466 without adversely affecting essential physiological functions of the worm. Additionally, A4 demonstrated an upregulation of two crucial antioxidant defense genes. Overall, these results suggested that the compound A4 can be a potential candidate with novel chemotherapeutic applications.


Subject(s)
Antineoplastic Agents , Caenorhabditis elegans , Coordination Complexes , Ruthenium , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ruthenium/chemistry , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Cell Line, Tumor , Mutation , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA/chemistry , MCF-7 Cells
2.
J Inorg Biochem ; 257: 112580, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38701694

ABSTRACT

Pincer type coumarin based N-substituted semicarbazone ligands HL1-4 and their corresponding ruthenium(II) complexes (1-4) were synthesized, analyzed and confirmed by various spectro analytical techniques. The molecular structure of the ligand HL3 and complex 3 was confirmed by single crystal X-ray diffraction analysis. The stoichiometry of complexes 1, 2 and 4 was confirmed by high resolution mass spectroscopy (HRMS). The binding affinity of the compounds with CT-DNA (Calf Thymus DNA) and BSA (Bovine Serum Albumin) was established by absorption and emission titration methods. The results of In vitro cytotoxicity showed the significant cytotoxic potential of the complexes against MDA-MB-231 cells (TNBC- Triple-negative breast cancer). Among the complexes, 1 and 4 have shown appreciable results. Further, antimigratory activity against the MDA-MB-231 cells was studied for the complexes 1 and 4. The percentage cell cycle arrest, apoptosis and necrosis were explored by flow cytometry. The in vivo anti-tumor activity of the complexes 1 and 4 using C. elegans as model organism was established by using the tumoral C. elegans strain JK1466 (gld-1(q485)), which bears a mutation in the gld-1 tumor suppressor gene. We have determined the effect of our complexes on tumor gonad reduction and found to be non toxic to the JK1466 worms and they have prolonged their mean lifespan with potential antioxidant ability by overcoming stress responses. Overall, our study reported herein demonstrated that the complexes 1 and 4 could be established as potential metallo-drugs substantiating further exploration.


Subject(s)
Antineoplastic Agents , Caenorhabditis elegans , Coordination Complexes , Ruthenium , Humans , Animals , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Ruthenium/chemistry , Ruthenium/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Apoptosis/drug effects , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Longevity/drug effects , Female , MDA-MB-231 Cells
3.
J Genet ; 1022023.
Article in English | MEDLINE | ID: mdl-37204127

ABSTRACT

Pigeonpea is the second most important legume crop grown in India after chickpea. India is the largest producer of pigeonpea in the world. However, the productivity of pigeonpea in India remains stagnant over the years. The productivity of pigeonpea can be improved through exploitation of heterosis. The cytoplasmic genetic male sterility is the predominant method employed in hybrid development in pigeonpea during the recent days owing to the advantages involved. The present study involved the identification of fertility restorers for three Cajanus scarabaeoides(A2) based short duration (120-130 days) male sterile lines, namely CORG 990047A, CORG 990052A and CORG 7A. A total of 77 inbreds were involved in the hybridization programme. The pollen fertility of the 186 hybrids ranged from 0.00 to 94.89%. The independent confirmation of fertility restoration based on pollen fertility and pod set by selfing showed that, the hybrids, namely CORG 990047A 9 AK 261322, CORG 990052A 9 AK 261322 and CORG 7A 9 AK 261322 were identified as fertile. The inbred AK 261322 was the potential restorer of fertility in A2 male sterile lines. The hybrids, namely CORG 990047A 9 AK 261322 (35.19%), CORG 990052A 9 AK 261322 (12.75%) and CORG 7A 9 AK 261322 (19.77%) showed high heterosis for single plant yield over CO(Rg)7, a commercial check variety. The hybrids identified in the present study can be exploited for commercial cultivation after evaluation under various yield trials to estimate its performance. The polymorphic SSR markers identified in the present study can be utilized in future to assess the genetic purity of the hybrids.


Subject(s)
Cajanus , Infertility , Cajanus/genetics , Fertility/genetics , Hybridization, Genetic , Infertility/genetics , Cytoplasm/genetics
4.
Environ Pollut ; 305: 119315, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35439596

ABSTRACT

Microplastics (MPs) and its associated organic and inorganic contaminants are one among the significant health hazards to almost all biota, including human. We investigated the polymer hazard risk and its adsorbed contaminants in MPs at six prominent beaches of Chennai on the southeast coast of India. The spatial variation of MPs during the northeast (NE) monsoon (range: 76-720 items/kg, mean: 247.4 items/kg) was higher than that during southwest (SW) monsoon (range: 84-498 items/kg, mean: 302.7 items/kg). In both the seasons, polyethylene (PE) and polypropylene (PP) were the dominant polymers and fibre was the predominant shape of MPs, likely to be derived from fishing, textile and urban activities in this region. Scanning electron microscope (SEM) images exhibited various surface weathering features including grooves, cracks, fractures, adhering particles, pits, vermiculate textures and fibre reinforcements. Energy dispersive X-ray spectrometer (EDS) results showed that MPs have adsorbed major (Si, Al, Na, Mg, Ca, Fe and Ti) and trace (Cu, Cr, Ni, Pb and Zn) metals. Though pollution load index (PLI) presented low degree of MP contamination in the beach sediments, hazardous polymers such as polyvinyl chloride (PVC), polyamide (PA) and polystyrene (PS) contributed to high polymer hazard index (PHI) and potential ecological risk index (PERI), posing very high risk to the biota. The trajectories obtained from particle-tracking coupled with hydrodynamic simulation clearly showed that 20% of MPs settled along the coast and the remaining moved towards north, alongshore and offshore (∼50 km) within 30 days, and in NE monsoon due to current reversal, the floating debris and MPs have drifted towards south, ∼40 km in 30 days, indicating the role of circulation in the fate and transport pathways of plastic debris.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Humans , India , Plastics , Polymers , Seasons , Water Pollutants, Chemical/analysis
5.
Mar Pollut Bull ; 163: 111969, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33515857

ABSTRACT

Abundance, chemical composition and ecological risk of microplastics (MPs) in terrestrial and marine environments have merited substantial attention from the research communities. This is the first attempt to comprehend the ecological risk of MPs in sediments along the Indian coast using meta-data. Polymer hazard index (PHI), pollution load index (PLI) and potential ecological risk index (PERI) were used to evaluate the quality of sediments. Areas have high PHI values (>1000) due to the presence of polymers with high hazard scores such as polyamide (PA) and polystyrene (PS). According to PLI values, sediments along the west coast of India (WCI) are moderately contaminated with MPs (PLI: 3.03 to 15.5), whereas sediments along the east coast of India (ECI) are less contaminated (PLI: 1 to 6.14). The PERI values of sediments along the Indian coast showed higher ecological risk for the metropolitan cities, river mouths, potential fishing zones and the remote islands.


Subject(s)
Microplastics , Water Pollutants, Chemical , Cities , Environmental Monitoring , Geologic Sediments , India , Plastics , Risk Assessment , Water Pollutants, Chemical/analysis
6.
J Fluoresc ; 29(3): 631-643, 2019 May.
Article in English | MEDLINE | ID: mdl-30993505

ABSTRACT

Photoluminescent carbon nanodots (CNDs) were prepared using a biocarbon source of lemon extract. The obtained CNDs are of spherical shape and are enriched with the carboxylic acid fucntionalities. CNDs exhibited a fluorescence emission at 445 nm and unveiled blue luminescence in ultraviolet excitation. The influences of pH and ionic strength toward the stability of CNDs were investigated in detail and the obtained stability authenticates their applicability in different environmental conditions. The competitive binding of Fe3+ with CNDs quenches the fluorescence behavior of CNDs and was further quenched with the selective complex formation of Fe3+ with tannic acid (TA). The interference experiments specified that CNDs-Fe3+ assembly selectively detected TA and the co-existing molecules have not influenced the quenching effect of TA with CNDs-Fe3+. The analytical reliability of constructed sensor was validated from the recovery obtained in the range of 91.66-107.02% in real samples. Thus the low cost and environmentally benign CNDs prepared from natural biomass provide new avenues in the fluorescence detection of biologically significant metal ions and biomolecules, facilitating their competency in on-site applications of real environmental samples.

7.
J Nanosci Nanotechnol ; 16(3): 2527-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27455665

ABSTRACT

A simple, hasty and eco-friendly approach for the synthesis of iron nanoparticles has been developed using the medicinally important Azadirachta indica extract, which act as both reducing and stabilizing agent. The formation and morphological properties of iron nanoparticles as a function of metallic precursor and Azadirachta indica extract concentration have been investigated. The influence of solvent over the size and texture of iron nanoparticles has also been evaluated in detail. The thermal behavior of prepared nanoparticles was identified from thermogravimetric analysis. Furthermore, the catalytic activity of prepared iron nanoparticles toward the reduction of p-nitrophenol was analyzed and the reduction process was occurred within 30 sec. The cost and time efficient biosynthesis process and excellent catalytic activity of the prepared iron nanoparticles construct this protocol attractive.


Subject(s)
Azadirachta/chemistry , Iron/chemistry , Metal Nanoparticles , Nitrophenols/chemistry , Plant Extracts/chemistry , Catalysis , Electrochemical Techniques , Microscopy, Electron, Scanning , Oxidation-Reduction , Powder Diffraction , Thermogravimetry
8.
Malays J Nutr ; 16(3): 379-87, 2010 Dec.
Article in English | MEDLINE | ID: mdl-22691991

ABSTRACT

The objective of this study was to develop a cereal-pulse complementary food fortified with different concentrations of pumpkin powder (Cucurbita moschata), and to analyse its sensory and physic-chemical parameters. Fresh pumpkins(Cucurbita moschata) were procured from the market and dehydrated and powdered in the laboratory. Sorghum (Sorghum vulgare) and whole green gram (Vigna radiate) were germinated, dried, pulverised and combined with powdered rice (Oryza sativa) in the ratio of 2:1:1. Pumpkin powder was added to this mixture at 10%, 20% and 30% variations. The complementary weaning food mix was subjected to sensory analysis (appearance, colour, flavour, texture and overall acceptability) by semi-trained panelists. The mix was analysed for its moisture, energy, protein, fat, carbohydrates, fibre, beta-carotene and anti-oxidant content. Nutritional analysis of the weaning mix demonstrated that there was a significant increase in the protein, fibre, carbohydrate and antioxidant levels with an increase in concentration of pumpkin powder. The sensory analysis revealed that the complementary food mix with 20% pumpkin powder fortification had good sensory qualities.

SELECTION OF CITATIONS
SEARCH DETAIL
...