Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biologia (Bratisl) ; : 1-11, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-37363641

ABSTRACT

No approved vaccine exists for Klebsiella pneumoniae yet. Outer membrane protein-K17 (OMPK17) is involved in K. pneumoniae pathogenesis. No information has been found about OMPK17 dominant epitopes in the literature. Therefore, this study aimed to predict both T cell and B cell epitopes of K. pneumoniae OMPK17 via immunoinformatics approaches. Both T cell (class-I and II) and B cell (linear and discontinuous) epitopes of OMPK17 were predicted. Several screening analyses were performed including clustering, immunogenicity, human similarity, toxicity, allergenicity, conservancy, docking, and structural/physicochemical suitability. The results showed that some regions of OMPK17 have more potential as epitopes. The most possible epitopes were found via several analyses including the selection of higher-scoring epitopes, the epitopes predicted with more tools, more immunogenic epitopes, the epitopes capable of producing interferon-gamma, the epitopes with more dissimilarity to human peptides, and non-toxic and non-allergenic epitopes. By comparing the best T cell and B cell epitopes, we reached a 25-mer peptide containing both T cell (class-I and class-II) and B cell (linear) epitopes and comprising appropriate physicochemical characteristics that are required for K. pneumoniae vaccine development. The in vitro/in vivo study of this peptide is recommended to clarify its actual efficiency and efficacy. Supplementary information: The online version contains supplementary material available at 10.1007/s11756-023-01371-0.

2.
Biologicals ; 82: 101678, 2023 May.
Article in English | MEDLINE | ID: mdl-37126906

ABSTRACT

The treatment of Klebsiella pneumoniae is faced with challenges demanding the development of a vaccination strategy. However, no approved and globally available vaccine exists yet. This study aimed to systematically review all published data on K. pneumoniae vaccines in animal models. Without time restrictions, electronic databases were searched using appropriate keywords. The retrieved studies were screened and the data of those that matched our inclusion criteria were collected and analyzed. In total, 2027 records were retrieved; of which 35 studies were included for systematic review. The most frequently used animal model was BALB/c mice. Proteins, polysaccharides, and their combinations (conjugates) were the most common vaccine candidates used. The amount of antigen, the route used for immunization, and the challenge strategy was varying in the studies and were chosen based on several factors such as the animal model, the type of antigen, and the schedule of immunization. Almost all studies claimed that their vaccine was effective/protective, indicated by increasing survival rate, reducing organ bacterial load, and eliciting protective antibody and/or cytokine responses. Altogether, the information presented here will assist researchers to have a better look at the K. pneumoniae vaccine candidates and to take more effective steps in the future.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Mice , Bacterial Vaccines , Immunization , Klebsiella Infections/prevention & control , Klebsiella Infections/microbiology , Mice, Inbred BALB C , Models, Animal , Vaccination
3.
Int J Pept Res Ther ; 27(4): 2209-2221, 2021.
Article in English | MEDLINE | ID: mdl-34226823

ABSTRACT

Klebsiella pneumoniae causes various human infections. Ferric enterobactin protein (FepA) is a conserved protein of K. pneumoniae with high immunogenicity. In the present study, using comprehensive in silico approaches the T and B cell-specific epitopes of K. pneumoniae FepA were identified. The T (both class I and class II) and B (both linear and conformational) epitopes of FepA were predicted using prediction tools. The predicted epitopes were screened for human similarity, immunogenicity, antigenicity, allergenicity, toxicity, conservancy, structural and physicochemical suitability, and in case of T epitopes binding to HLA alleles, using numerous immune-informatics, homology modeling, and molecular docking approaches. These analyses led to introduce the most dominant FepA epitopes that are appropriate for vaccine development. Furthermore, we introduced an antigenic peptide containing both T and B epitopes which comprises suitable structural and physiochemical properties needed for vaccine development and it is conserved in many bacteria. Altogether, here the highly immunogenic T and B epitopes of FepA as well as a final epitopic peptide containing both T and B epitopes were found and introduced for future vaccine development studies. It is suggested that the actual efficiency and efficacy of our final epitopic peptide be investigated by in vitro/in vivo testing. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-021-10247-3.

SELECTION OF CITATIONS
SEARCH DETAIL
...