Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851210

ABSTRACT

BACKGROUND: In preparation of future clinical trials employing the Mobetron electron linear accelerator to deliver FLASH Intraoperative Radiation Therapy (IORT), the development of a Monte Carlo (MC)-based framework for dose calculation was required. PURPOSE: To extend and validate the in-house developed fast MC dose engine MonteRay (MR) for future clinical applications in IORT. METHODS: MR is a CPU MC dose calculation engine written in C++ that is capable of simulating therapeutic proton, helium, and carbon ion beams. In this work, development steps are taken to include electrons and photons in MR are presented. To assess MRs accuracy, MR generated simulation results were compared against FLUKA predictions in water, in presence of heterogeneities as well as in an anthropomorphic phantom. Additionally, dosimetric data has been acquired to evaluate MRs accuracy in predicting dose-distributions generated by the Mobetron accelerator. Runtimes of MR were evaluated against those of the general-purpose MC code FLUKA on standard benchmark problems. RESULTS: MR generated dose distributions for electron beams incident on a water phantom match corresponding FLUKA calculated distributions within 2.3% with range values matching within 0.01 mm. In terms of dosimetric validation, differences between MR calculated and measured dose values were below 3% for almost all investigated positions within the water phantom. Gamma passing rate (1%/1 mm) for the scenarios with inhomogeneities and gamma passing rate (3%/2 mm) with the anthropomorphic phantom, were > 99.8% and 99.4%, respectively. The average dose differences between MR (FLUKA) and the measurements was 1.26% (1.09%). Deviations between MR and FLUKA were well within 1.5% for all investigated depths and 0.6% on average. In terms of runtime, MR achieved a speedup against reference FLUKA simulations of about 13 for 10 MeV electrons. CONCLUSIONS: Validations against general purpose MC code FLUKA predictions and experimental dosimetric data have proven the validity of the physical models implemented in MR for IORT applications. Extending the work presented here, MR will be interfaced with external biophysical models to allow accurate FLASH biological dose predictions in IORT.

2.
Med Phys ; 51(2): 1450-1459, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37742343

ABSTRACT

BACKGROUND: The possible emergence of the FLASH effect-the sparing of normal tissue while maintaining tumor control-after irradiations at dose-rates exceeding several tens of Gy per second, has recently spurred a surge of studies attempting to characterize and rationalize the phenomenon. Investigating and reporting the dose and instantaneous dose-rate of ultra-high dose-rate (UHDR) particle radiotherapy beams is crucial for understanding and assessing the FLASH effect, towards pre-clinical application and quality assurance programs. PURPOSE: The purpose of the present work is to investigate a novel diamond-based detector system for dose and instantaneous dose-rate measurements in UHDR particle beams. METHODS: Two types of diamond detectors, a microDiamond (PTW 60019) and a diamond detector prototype specifically designed for operation in UHDR beams (flashDiamond), and two different readout electronic chains, were investigated for absorbed dose and instantaneous dose-rate measurements. The detectors were irradiated with a helium beam of 145.7 MeV/u under conventional and UHDR delivery. Dose-rate delivery records by the monitoring ionization chamber and diamond detectors were studied for single spot irradiations. Dose linearity at 5 cm depth and in-depth dose response from 2 to 16 cm were investigated for both measurement chains and both detectors in a water tank. Measurements with cylindrical and plane-parallel ionization chambers as well as Monte-Carlo simulations were performed for comparisons. RESULTS: Diamond detectors allowed for recording the temporal structure of the beam, in good agreement with the one obtained by the monitoring ionization chamber. A better time resolution of the order of few µs was observed as compared to the approximately 50 µs of the monitoring ionization chamber. Both diamonds detectors show an excellent linearity response in both delivery modalities. Dose values derived by integrating the measured instantaneous dose-rates are in very good agreement with the ones obtained by the standard electrometer readings. Bragg peak curves confirmed the consistency of the charge measurements by the two systems. CONCLUSIONS: The proposed novel dosimetric system allows for a detailed investigation of the temporal evolution of UHDR beams. As a result, reliable and accurate determinations of dose and instantaneous dose-rate are possible, both required for a comprehensive characterization of UHDR beams and relevant for FLASH effect assessment in clinical treatments.


Subject(s)
Diamond , Helium , Diamond/chemistry , Helium/therapeutic use , Radiometry , Monte Carlo Method
3.
Med Phys ; 51(3): 2251-2262, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37847027

ABSTRACT

BACKGROUND: Radiotherapy with charged particles at high dose and ultra-high dose rate (uHDR) is a promising technique to further increase the therapeutic index of patient treatments. Dose rate is a key quantity to predict the so-called FLASH effect at uHDR settings. However, recent works introduced varying calculation models to report dose rate, which is susceptible to the delivery method, scanning path (in active beam delivery) and beam intensity. PURPOSE: This work introduces an analytical dose rate calculation engine for raster scanned charged particle beams that is able to predict dose rate from the irradiation plan and recorded beam intensity. The importance of standardized dose rate calculation methods is explored here. METHODS: Dose is obtained with an analytical pencil beam algorithm, using pre-calculated databases for integrated depth dose distributions and lateral penumbra. Dose rate is then calculated by combining dose information with the respective particle fluence (i.e., time information) using three dose-rate-calculation models (mean, instantaneous, and threshold-based). Dose rate predictions for all three models are compared to uHDR helium ion beam (145.7 MeV/u, range in water of approximatively 14.6 cm) measurements performed at the Heidelberg Ion Beam Therapy Center (HIT) with a diamond-detector prototype. Three scanning patterns (scanned or snake-like) and four field sizes are used to investigate the dose rate differences. RESULTS: Dose rate measurements were in good agreement with in-silico generated distributions using the here introduced engine. Relative differences in dose rate were below 10% for varying depths in water, from 2.3 to 14.8 cm, as well as laterally in a near Bragg peak area. In the entrance channel of the helium ion beam, dose rates were predicted within 7% on average for varying irradiated field sizes and scanning patterns. Large differences in absolute dose rate values were observed for varying calculation methods. For raster-scanned irradiations, the deviation between mean and threshold-based dose rate at the investigated point was found to increase with the field size up to 63% for a 10 mm × 10 mm field, while no significant differences were observed for snake-like scanning paths. CONCLUSIONS: This work introduces the first dose rate calculation engine benchmarked to instantaneous dose rate, enabling dose rate predictions for physical and biophysical experiments. Dose rate is greatly affected by varying particle fluence, scanning path, and calculation method, highlighting the need for a consensus among the FLASH community on how to calculate and report dose rate in the future. The here introduced engine could help provide the necessary details for the analysis of the sparing effect and uHDR conditions.


Subject(s)
Helium , Proton Therapy , Humans , Helium/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Benchmarking , Monte Carlo Method , Proton Therapy/methods , Radiotherapy Dosage , Ions , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...