Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 397: 109948, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37572883

ABSTRACT

BACKGROUND: Accurate targeting of brain structures for in-vivo electrophysiological recordings is essential for basic as well as clinical neuroscience research. Although methodologies for precise targeting and recording from the cortical surface are abundant, such protocols are scarce for deep brain structures. NEW METHOD: We have incorporated stable fiducial markers within a custom cranial cap for improved image-guided neuronavigation targeting of subcortical structures in macaque monkeys. Anchor bolt chambers allowed for a minimally invasive entrance into the brain for chronic recordings. A 3D-printed microdrive allowed for semi-chronic applications. RESULTS: We achieved an average Euclidean targeting error of 1.6 mm and a radial error of 1.2 mm over three implantations in two animals. Chronic and semi-chronic implantations allowed for recording of extracellular neuronal activity, with single-neuron activity examples shown from one macaque monkey. COMPARISON WITH EXISTING METHOD(S): Traditional stereotactic methods ignore individual anatomical variability. Our targeting approach allows for a flexible, subject-specific surgical plan with targeting errors lower than what is reported in humans, and equal to or lower than animal models using similar methods. Utilizing an anchor bolt as a chamber reduced the craniotomy size needed for electrode implantation, compared to conventional large access chambers which are prone to infection. Installation of an in-house, 3D-printed, screw-to-mount mechanical microdrive is in contrast to existing semi-chronic methods requiring fabrication, assembly, and installation of complex parts. CONCLUSIONS: Leveraging commercially available tools for implantation, our protocol decreases the risk of infection from open craniotomies, and improves the accuracy of chronic electrode implantations targeting deep brain structures in large animal models.


Subject(s)
Brain , Neuronavigation , Humans , Animals , Neuronavigation/methods , Microelectrodes , Stereotaxic Techniques , Craniotomy , Electrodes, Implanted
2.
Med Phys ; 49(9): 6055-6067, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35754362

ABSTRACT

BACKGROUND: The use of non-ionizing electric fields from low-intensity voltage sources (< 10 V) to control malignant tumor growth is showing increasing potential as a cancer treatment modality. A method of applying these low-intensity electric fields using multiple implanted electrodes within or adjacent to tumor volumes has been termed as intratumoral modulation therapy (IMT). PURPOSE: This study explores advancements in the previously established IMT optimization algorithm, and the development of a custom treatment planning system for patient-specific IMT. The practicality of the treatment planning system is demonstrated by implementing the full optimization pipeline on a brain phantom with robotic electrode implantation, postoperative imaging, and treatment stimulation. METHODS: The integrated planning pipeline in 3D Slicer begins with importing and segmenting patient magnetic resonance images (MRI) or computed tomography (CT) images. The segmentation process is manual, followed by a semi-automatic smoothing step that allows the segmented brain and tumor mesh volumes to be smoothed and simplified by applying selected filters. Electrode trajectories are planned manually on the patient MRI or CT by selecting insertion and tip coordinates for a chosen number of electrodes. The electrode tip positions and stimulation parameters (phase shift and voltage) can then be optimized with the custom semi-automatic IMT optimization algorithm where users can select the prescription electric field, voltage amplitude limit, tissue electrical properties, nearby organs at risk, optimization parameters (electrode tip location, individual contact phase shift and voltage), desired field coverage percent, and field conformity optimization. Tables of optimization results are displayed, and the resulting electric field is visualized as a field-map superimposed on the MR or CT image, with 3D renderings of the brain, tumor, and electrodes. Optimized electrode coordinates are transferred to robotic electrode implantation software to enable planning and subsequent implantation of the electrodes at the desired trajectories. RESULTS: An IMT treatment planning system was developed that incorporates patient-specific MRI or CT, segmentation, volume smoothing, electrode trajectory planning, electrode tip location and stimulation parameter optimization, and results visualization. All previous manual pipeline steps operating on diverse software platforms were coalesced into a single semi-automated 3D Slicer-based user interface. Brain phantom validation of the full system implementation was successful in preoperative planning, robotic electrode implantation, and postoperative treatment planning to adjust stimulation parameters based on actual implant locations. Voltage measurements were obtained in the brain phantom to determine the electrical parameters of the phantom and validate the simulated electric field distribution. CONCLUSIONS: A custom treatment planning and implantation system for IMT has been developed in this study and validated on a phantom brain model, providing an essential step in advancing IMT technology toward future clinical safety and efficacy investigations.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Brain/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Electrodes , Electrodes, Implanted , Humans , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods
4.
Ultrasound Med Biol ; 45(10): 2736-2746, 2019 10.
Article in English | MEDLINE | ID: mdl-31281009

ABSTRACT

Applications of ultrasound guidance for epidural injections are hindered by poor needle and epidural space visualization. This work presents an augmented reality (AR) ultrasound guidance system that addresses challenges in both needle visualization during navigation and epidural space identification for needle positioning. In this system, (i) B-mode ultrasound and the needle are visualized in a 3-D AR environment for improved navigation, and (ii) A-mode ultrasound, obtained from a custom-made single-element transducer housed at the needle tip, is used to identify the epidural space for improved needle positioning. Performance of the system was evaluated against ultrasound-only guidance in a phantom study with novice operators and an expert anesthesiologist. The procedure success rate was higher with the AR system (100%) than ultrasound-only guidance (57%). The AR system has the potential to improve procedure outcomes in terms of success rate, time, needle path-length and usability.


Subject(s)
Anesthesia, Spinal/methods , Augmented Reality , Phantoms, Imaging , Ultrasonography, Interventional/methods
5.
Healthc Technol Lett ; 6(6): 191-196, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32038856

ABSTRACT

Neurovascular surgery aims to repair diseased or damaged blood vessels in the brain or spine. There are numerous procedures that fall under this category, and in all of them, the direction of blood flow through these vessels is crucial information. Current methods to determine this information intraoperatively include static pre-operative images combined with augmented reality, Doppler ultrasound, and injectable fluorescent dyes. Each of these systems has inherent limitations. This study includes the proposal and preliminary validation of a technique to identify the direction of blood flow through vessels using only video segments of a few seconds acquired from routinely used surgical microscopes. The video is enhanced to reveal subtle colour fluctuations related to blood pulsation, and these rhythmic signals are further analysed in Fourier space to reveal the direction of blood flow. The proposed method was validated using a novel physical phantom and retrospective analysis of surgical videos and demonstrated high accuracy in identifying the direction of blood flow.

6.
Int J Comput Assist Radiol Surg ; 12(7): 1141-1149, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28425030

ABSTRACT

PURPOSE: Surgical cameras are prevalent in modern operating theatres often used as surrogates for direct vision. A surgical navigational system is a useful adjunct, but requires an accurate "hand-eye" calibration to determine the geometrical relationship between the surgical camera and tracking markers. METHODS: Using a tracked ball-tip stylus, we formulated hand-eye calibration as a Perspective-n-Point problem, which can be solved efficiently and accurately using as few as 15 measurements. RESULTS: The proposed hand-eye calibration algorithm was applied to three types of camera and validated against five other widely used methods. Using projection error as the accuracy metric, our proposed algorithm compared favourably with existing methods. CONCLUSION: We present a fully automated hand-eye calibration technique, based on Procrustean point-to-line registration, which provides superior results for calibrating surgical cameras when compared to existing methods.


Subject(s)
Computer Peripherals , Image Processing, Computer-Assisted , Minimally Invasive Surgical Procedures/methods , Algorithms , Calibration , Humans , Reproducibility of Results
7.
IEEE Trans Biomed Eng ; 61(10): 2527-37, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24833412

ABSTRACT

A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.


Subject(s)
Database Management Systems , Image Processing, Computer-Assisted/methods , Internet , Software , Ultrasonography/methods , Calibration , Humans , Imaging, Three-Dimensional , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...