Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
F1000Res ; 5: 250, 2016.
Article in English | MEDLINE | ID: mdl-27335637

ABSTRACT

REDD1 is a transcriptional target gene of p53 and HIF-1, and an inhibitor of mTOR (mechanistic target of rapamycin) complex 1 (mTORC1)-signaling through PP2A-dependent interaction, making it an important convergence point of both tumor suppression and cell growth pathways. In accordance with this positioning, REDD1 levels are transcriptionally upregulated in response to a variety of cellular stress factors such as nutrient deprivation, hypoxia and DNA damage. In the absence of such conditions, and in particular where growth factor signaling is activated, REDD1 expression is typically negligible; therefore, it is necessary to induce REDD1 prior to experimentation or detection in model systems. Here, we evaluated the performance of a commercially available polyclonal antibody recognizing REDD1 by Western blotting in the presence of thapsigargin, a pharmacological inducer of ER stress well known to upregulate REDD1 protein expression. Further, REDD1 antibody specificity was challenged in HEK-293 cells in the presence of RNA interference and with a REDD1 (-/-) mouse embryonic fibroblast knockout cell line. Results showed reproducibility and specificity of the antibody, which was upheld in the presence of thapsigargin treatment. We conclude that this antibody can be used to reliably detect REDD1 endogenous expression in samples of both human and mouse origin.

2.
Am J Physiol Endocrinol Metab ; 290(6): E1267-75, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16434554

ABSTRACT

Volatile anesthetics are essential for modern medical practice, but sites and mechanisms of action for any of their numerous cellular effects remain largely unknown. Previous studies with yeast showed that volatile anesthetics induce nutrient-dependent inhibition of growth through mechanisms involving inhibition of mRNA translation. Studies herein show that the volatile anesthetic halothane inhibits protein synthesis in perfused rat liver at doses ranging from 2 to 6%. A marked disaggregation of polysomes occurs, indicating that inhibition of translation initiation plays a key role. Dose- and time-dependent alterations that decrease the function of a variety of translation initiation processes are observed. At 6% halothane, a rapid and persistent increase in phosphorylation of the alpha-subunit of eukaryotic translation initiation factor (eIF)2 occurs. This is accompanied by inhibition of activity of the guanine nucleotide exchange factor eIF2B that is responsible for GDP-GTP exchange on eIF2. At lower doses, neither eIF2alpha phosphorylation nor eIF2B activity is altered. After extended exposure to 6% halothane, alterations in two separate responses regulated by the target of rapamycin pathway occur: 1) redistribution of eIF4E from its translation-stimulatory association with eIF4G to its translation-inactive complex with eIF4E-binding protein-1; and 2) decreased phosphorylation of ribosomal protein S6 (rpS6) with a corresponding decrease in active forms of a kinase that phosphorylates rpS6 (p70(S6K1)). Changes in the association of eIF4E and eIF4G are observed only after extended exposure to low anesthetic doses. Thus dose- and time-dependent alterations in multiple processes permit liver cells to adapt translation to variable degrees and duration of stress imposed by anesthetic exposure.


Subject(s)
Anesthetics, Inhalation/pharmacology , Halothane/pharmacology , Protein Biosynthesis/drug effects , Protein Processing, Post-Translational/drug effects , Animals , Dose-Response Relationship, Drug , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Liver/metabolism , Male , Models, Biological , Rats , Ribosomal Protein S6 Kinases, 90-kDa , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...