Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Physiol ; 11(1): coac083, 2023.
Article in English | MEDLINE | ID: mdl-36756464

ABSTRACT

Bioenergetics is the study of how animals achieve energetic balance. Energetic balance results from the energetic expenditure of an individual and the energy they extract from their environment. Ingested energy depends on several extrinsic (e.g prey species, nutritional value and composition, prey density and availability) and intrinsic factors (e.g. foraging effort, success at catching prey, digestive processes and associated energy losses, and digestive capacity). While the focus in bioenergetic modelling is often on the energetic costs an animal incurs, the robust estimation of an individual's energy intake is equally critical for producing meaningful predictions. Here, we review the components and processes that affect energy intake from ingested gross energy to biologically useful net energy (NE). The current state of knowledge of each parameter is reviewed, shedding light on research gaps to advance this field. The review highlighted that the foraging behaviour of many marine mammals is relatively well studied via biologging tags, with estimates of success rate typically assumed for most species. However, actual prey capture success rates are often only assumed, although we note studies that provide approaches for its estimation using current techniques. A comprehensive collation of the nutritional content of marine mammal prey species revealed a robust foundation from which prey quality (comprising prey species, size and energy density) can be assessed, though data remain unavailable for many prey species. Empirical information on various energy losses following ingestion of prey was unbalanced among marine mammal species, with considerably more literature available for pinnipeds. An increased understanding and accurate estimate of each of the components that comprise a species NE intake are an integral part of bioenergetics. Such models provide a key tool to investigate the effects of disturbance on marine mammals at an individual and population level and to support effective conservation and management.

2.
Ecol Evol ; 11(23): 17458-17470, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938521

ABSTRACT

Quantifying consumption and prey choice for marine predator species is key to understanding their interaction with prey species, fisheries, and the ecosystem as a whole. However, parameterizing a functional response for large predators can be challenging because of the difficulty in obtaining the required data on predator diet and on the availability of multiple prey species.This study modeled a multi-species functional response (MSFR) to describe the relationship between consumption by harbour porpoises (Phocoena phocoena) and the availability of multiple prey species in the southern North Sea. Bayesian methodology was employed to estimate MSFR parameters and to incorporate uncertainties in diet and prey availability estimates. Prey consumption was estimated from stomach content data from stranded harbour porpoises. Prey availability to harbour porpoises was estimated based on the spatial overlap between prey distributions, estimated from fish survey data, and porpoise foraging range in the days prior to stranding predicted from telemetry data.Results indicated a preference for sandeels in the study area. Prey switching behavior (change in preference dependent on prey abundance) was confirmed by the favored type III functional response model. Variation in the size of the foraging range (estimated area where harbour porpoises could have foraged prior to stranding) did not alter the overall pattern of the results or conclusions.Integrating datasets on prey consumption from strandings, predator foraging distribution using telemetry, and prey availability from fish surveys into the modeling approach provides a methodological framework that may be appropriate for fitting MSFRs for other predators.

SELECTION OF CITATIONS
SEARCH DETAIL
...