Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37623106

ABSTRACT

Silica aerogels and their derivatives have outstanding thermal properties with exceptional values in the thermal insulation industry. However, their brittle nature restricts their large-scale commercialization. Thus, enhancing their mechanical strength without affecting their thermal insulating properties is essential. Therefore, for the first time, highly thermally stable poly(acrylamide-co-acrylic acid) partial sodium salt is used as a reinforcing polymer to synthesize hybrid P(AAm-CO-AAc)-silica aerogels via epoxy ring-opening polymerization in the present study. Functional groups in P(AAm-CO-AAc) partial sodium salts, such as CONH2 and COOH, acted as nucleophiles for the epoxy ring-opening reaction with (3-glycidyloxypropyl)trimethoxysilane, which resulted in a seven-fold enhancement in mechanical strength compared to that of pristine silica aerogel while maintaining thermal conductivity at less than 30.6 mW/mK and porosity of more than 93.68%. Moreover, the hybrid P(AAm-CO-AAc)-silica aerogel demonstrated improved thermal stability up to 343 °C, owing to the synergetic effect between the P(AAm-CO-AAc) and the silica aerogel, corresponding to the thermal stability and strong covalent bonding among them. These excellent results illustrate that this new synthetic approach for producing hybrid P(AAm-CO-AAc)-silica aerogels is useful for enhancing the mechanical strength of pristine silica aerogel without impairing its thermal insulating property and shows potential as an industrial heat insulation material.

SELECTION OF CITATIONS
SEARCH DETAIL
...