Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(5): e0267215, 2022.
Article in English | MEDLINE | ID: mdl-35544470

ABSTRACT

For maize (Zea mays L.), nitrogen (N) fertilizer use is often summarized from field to global scales using average N use efficiency (NUE). But expressing NUE as averages is misleading because grain increase to added N diminishes near optimal yield. Thus, environmental risks increase as economic benefits decrease. Here, we use empirical datasets obtained in North America of maize grain yield response to N fertilizer (n = 189) to create and interpret incremental NUE (iNUE), or the change in NUE with change in N fertilization. We show for those last units of N applied to reach economic optimal N rate (EONR) iNUE for N removed with the grain is only about 6%. Conversely stated, for those last units of N applied over 90% is either lost to the environment during the growing season, remains as inorganic soil N that too may be lost after the growing season, or has been captured within maize stover and roots or soil organic matter pools. Results also showed iNUE decrease averaged 0.63% for medium-textured soils and 0.37% for fine-textured soils, attributable to fine-textured soils being more predisposed to denitrification and/or lower mineralization. Further analysis demonstrated the critical nature growing season water amount and distribution has on iNUE. Conditions with too much rainfall and/or uneven rainfall produced low iNUE. Producers realize this from experience, and it is uncertain weather that largely drives insurance fertilizer additions. Nitrogen fertilization creating low iNUE is environmentally problematic. Our results show that with modest sub-EONR fertilization and minor forgone profit, average NUE improvements of ~10% can be realized. Further, examining iNUE creates unique perspective and ideas for how to improve N fertilizer management tools, educational programs, and public policies and regulations.


Subject(s)
Fertilizers , Zea mays , Agriculture/methods , Edible Grain/chemistry , Fertilizers/analysis , Nitrogen/analysis , Soil
2.
PLoS One ; 15(6): e0234544, 2020.
Article in English | MEDLINE | ID: mdl-32555670

ABSTRACT

Controlled-release and slow-release fertilizers can effectively supply nitrogen (N) while mitigating N loss. To determine the suitability of these fertilizers for plants in semi-arid environments, these fertilizers need to be evaluated under varying placement and temperature conditions. Several urea fertilizers were evaluated, including: uncoated, sulfur-coated (SCU), polymer-coated-sulfur-coated (PCSCU), and polymer-coated (PCU) with projected release timings between 45 and 180 d. Nitrogen release was measured under daily fluctuating or static temperatures applied either to the surface or buried in the soil. A second experiment consisted of two PCU sources and added a hanging bag placement comparison and low and high soil moisture treatments. For the first Experiment, the N in uncoated urea released shortly after application. The SCU and PCSCU treatments released > 80% of the N before the first sampling date. With fluctuating temperatures, the PCU 45, 75, 120, and 180 incorporated into the soil released N within +9, +9, -22, and -68 d of their expected timing. However, they released their N within 35 d when surface applied. Conversely, with static temperatures, PCU products released slowly, releasing under 80% for the entire study. The second experiment verified these results and showed no difference between low and high moisture and minimal release with fertilizer not in contact with soil. Each coated fertilizer in these studies exhibited slow/control release properties, but the PCU (surface applied) and SCU/PCSCU (surface applied or incorporated in soil) release was much more rapid than expected. Our research suggests that, although the SCU and PCSCU showed minimal slow-release properties (regardless of placement), the PCU fertilizers incorporated in the soil do have a controlled release approximate to what is expected, but have a much more rapid release when surface applied.


Subject(s)
Agriculture , Delayed-Action Preparations/pharmacology , Fertilizers , Nitrogen/pharmacology , Delayed-Action Preparations/chemistry , Nitrogen/chemistry , Polymers/chemistry , Soil/chemistry , Sulfur/chemistry , Temperature , Urea/chemistry , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...