Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cereb Cortex ; 33(15): 9303-9312, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37279562

ABSTRACT

Experience dependent plasticity in the visual cortex is a key paradigm for the study of mechanisms underpinning learning and memory. Despite this, studies involving manipulating visual experience have largely been limited to the primary visual cortex, V1, across various species. Here we investigated the effects of monocular deprivation (MD) on the ocular dominance (OD) and orientation selectivity of neurons in four visual cortical areas in the mouse: the binocular zone of V1 (V1b), the putative "ventral stream" area LM and the putative "dorsal stream" areas AL and PM. We employed two-photon calcium imaging to record neuronal responses in young adult mice before MD, immediately after MD, and following binocular recovery. OD shifts following MD were greatest in LM and smallest in AL and PM; in LM and AL, these shifts were mediated primarily through a reduction of deprived-eye responses, in V1b and LM through an increase in response through the non-deprived eye. The OD index recovered to pre-MD levels within 2 weeks in V1 only. MD caused a reduction in orientation selectivity of deprived-eye responses in V1b and LM only. Our results suggest that changes in OD in higher visual areas are not uniformly inherited from V1.


Subject(s)
Neuronal Plasticity , Visual Cortex , Mice , Animals , Neuronal Plasticity/physiology , Mice, Inbred C57BL , Visual Cortex/physiology , Dominance, Ocular , Learning , Sensory Deprivation/physiology
2.
J Immunol ; 211(1): 103-117, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37195185

ABSTRACT

Recruited neutrophils are among the first phagocytic cells to interact with the phagosomal pathogen Leishmania following inoculation into the mammalian dermis. Analysis of Leishmania-infected neutrophils has revealed alterations in neutrophil viability, suggesting that the parasite can both induce or inhibit apoptosis. In this study, we demonstrate that entry of Leishmania major into murine neutrophils is dependent on the neutrophil surface receptor CD11b (CR3/Mac-1) and is enhanced by parasite opsonization with C3. Infected neutrophils underwent robust NADPH oxidase isoform 2 (NOX2)-dependent respiratory burst based on detection of reactive oxygen species within the phagolysosome but largely failed to eliminate the metacyclic promastigote life cycle stage of the parasite. Infected neutrophils displayed an "apoptotic" phosphatidylserine (PS)-positive phenotype, which was induced by both live and fixed parasites but not latex beads, suggesting that PS expression was parasite specific but does not require active infection. In addition, neutrophils from parasite/neutrophil coculture had increased viability, decreased caspase 3, 8, and 9 gene expression, and reduced protein levels of both the pro and cleaved forms of the classical apoptosis-inducing executioner caspase, Caspase 3. Our data suggest that CD11b-mediated Leishmania internalization initiates respiratory burst and PS externalization, followed by a reduction in both the production and cleavage of caspase 3, resulting in a phenotypic state of "stalled apoptosis."


Subject(s)
Leishmania major , Parasites , Animals , Mice , Apoptosis , Caspase 3/metabolism , Leishmania major/metabolism , Macrophage-1 Antigen/metabolism , Mammals/metabolism , Neutrophils/metabolism , Parasites/metabolism , Respiratory Burst
3.
Cell Rep ; 39(10): 110932, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675774

ABSTRACT

A long-range circuit linking the medial frontal cortex to the primary visual cortex (V1) has been proposed to mediate visual selective attention in mice during visually guided behavior. Here, we use in vivo two-photon functional imaging to measure the endogenous activity of axons of A24b/M2 neurons from this region projecting to layer 1 of V1 (A24b/M2-V1axons) in mice either passively viewing stimuli or performing a go/no-go visually guided task. We observe that while A24b/M2-V1axons are recruited under these conditions, this is not linked to enhancement of neural or behavioral measures of sensory coding. Instead, A24b/M2-V1axon activity is associated with licking behavior, modulated by reward, and biased toward the sensory cortical hemisphere representing the stimulus currently being discriminated.


Subject(s)
Visual Cortex , Animals , Axons , Discrimination, Psychological , Mice , Neurons/physiology , Visual Cortex/physiology , Visual Perception/physiology
4.
J Neurosci Methods ; 363: 109343, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34464650

ABSTRACT

BACKGROUND: The development of new high throughput approaches for neuroscience such as high-density silicon probes and 2-photon imaging have led to a renaissance in visual neuroscience. However, generating the stimuli needed to evoke activity in the visual system still represents a non-negligible difficulty for experimentalists. While several widely used software toolkits exist to deliver such stimuli, they all suffer from some shortcomings. Primarily, the hardware needed to effectively display such stimuli comes at a significant financial cost, and secondly, triggering and/or timing the stimuli such that it can be accurately synchronized with other devices requires the use of legacy hardware, further hardware, or bespoke solutions. RESULTS: Here we present RPG (Raspberry Pi Gratings), a Python package written for the Raspberry Pi, which overcomes these issues. Specifically, the Raspberry Pi is a low-cost, credit card sized computer with general purpose input/output pins, allowing RPG to be triggered to deliver stimuli and to provide real-time feedback on stimulus timing. RPG delivers stimuli at 60 frames per second and the feedback of frame timings is accurate to 10s of microseconds. COMPARISON WITH EXISTING METHOD(S): With respect to the accuracy of frame timings, the performance of RPG is at least as accurate as commonly used packages. However, the inbuilt ability to trigger stimuli and the real-time feedback of frame timings will be extremely useful for certain experiments. CONCLUSIONS: RPG provides a simple to use Python interface that is capable of generating drifting sine wave gratings, Gabor patches and displaying raw images/video.


Subject(s)
Neurosciences , Software
5.
Cereb Cortex ; 30(8): 4424-4437, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32147692

ABSTRACT

The rodent retrosplenial cortex (RSC) functions as an integrative hub for sensory and motor signals, serving roles in both navigation and memory. While RSC is reciprocally connected with the sensory cortex, the form in which sensory information is represented in the RSC and how it interacts with motor feedback is unclear and likely to be critical to computations involved in navigation such as path integration. Here, we used 2-photon cellular imaging of neural activity of putative excitatory (CaMKII expressing) and inhibitory (parvalbumin expressing) neurons to measure visual and locomotion evoked activity in RSC and compare it to primary visual cortex (V1). We observed stimulus position and orientation tuning, and a retinotopic organization. Locomotion modulation of activity of single neurons, both in darkness and light, was more pronounced in RSC than V1, and while locomotion modulation was strongest in RSC parvalbumin-positive neurons, visual-locomotion integration was found to be more supralinear in CaMKII neurons. Longitudinal measurements showed that response properties were stably maintained over many weeks. These data provide evidence for stable representations of visual cues in RSC that are spatially selective. These may provide sensory data to contribute to the formation of memories of spatial information.


Subject(s)
Gyrus Cinguli/physiology , Neurons/physiology , Spatial Memory/physiology , Visual Perception/physiology , Animals , Cues , Mice
6.
Schizophr Bull ; 45(6): 1349-1357, 2019 10 24.
Article in English | MEDLINE | ID: mdl-30945745

ABSTRACT

Conceptual and computational models have been advanced that propose that perceptual disturbances in psychosis, such as hallucinations, may arise due to a disruption in the balance between bottom-up (ie sensory) and top-down (ie from higher brain areas) information streams in sensory cortex. However, the neural activity underlying this hypothesized alteration remains largely unexplored. Pharmacological N-methyl-d-aspartate receptor (NMDAR) antagonism presents an attractive model to examine potential changes as it acutely recapitulates many of the symptoms of schizophrenia including hallucinations, and NMDAR hypofunction is strongly implicated in the pathogenesis of schizophrenia as evidenced by large-scale genetic studies. Here we use in vivo 2-photon imaging to measure frontal top-down signals from the anterior cingulate cortex (ACC) and their influence on activity of the primary visual cortex (V1) in mice during pharmacologically induced NMDAR hypofunction. We find that global NMDAR hypofunction causes a significant increase in activation of top-down ACC axons, and that surprisingly this is associated with an ACC-dependent net suppression of spontaneous activity in V1 as well as a reduction in V1 sensory-evoked activity. These findings are consistent with a model in which perceptual disturbances in psychosis are caused in part by aberrant top-down frontal cortex activity that suppresses the transmission of sensory signals through early sensory areas.


Subject(s)
Dizocilpine Maleate/pharmacology , Evoked Potentials, Visual/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Gyrus Cinguli/drug effects , Neural Inhibition/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Visual Cortex/drug effects , Animals , Axons , Disease Models, Animal , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Hallucinations/metabolism , Hallucinations/physiopathology , Mice , Neural Pathways , Optical Imaging , Psychotic Disorders/metabolism , Psychotic Disorders/physiopathology , Visual Cortex/metabolism , Visual Cortex/physiopathology
7.
Transl Psychiatry ; 9(1): 29, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30664619

ABSTRACT

Deletions in the 15q11.2 region of the human genome are associated with neurobehavioral deficits, and motor development delay, as well as in some cases, symptoms of autism or schizophrenia. The cytoplasmic FMRP-interacting protein 1 (CYFIP1) is one of the four genes contained within this locus and has been associated with other genetic forms of autism spectrum disorders (ASD). In mice, Cyfip1 haploinsufficiency leads to alteration of dendritic spine morphology and defects in synaptic plasticity, two pathophysiological hallmarks of mouse models of ASD. At the behavioral level, however, Cyfip1 haploinsufficiency leads to minor phenotypes, not directly relevant for 15q11.2 deletion syndrome or ASD. A fundamental question is whether neuronal phenotypes caused by the mutation of Cyfip1 are relevant for the human condition. Here, we describe a synaptic cluster of ASD-associated proteins centered on CYFIP1 and the adhesion protein Neuroligin-3. Cyfip1 haploinsufficiency in mice led to decreased dendritic spine density and stability associated with social behavior and motor learning phenotypes. Behavioral training early in development resulted in alleviating the motor learning deficits caused by Cyfip1 haploinsufficiency. Altogether, these data provide new insight into the neuronal and behavioral phenotypes caused by Cyfip1 mutation and proof-of-concept for the development of a behavioral therapy to treat phenotypes associated with 15q11.2 syndromes and ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Haploinsufficiency/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Social Behavior , Adaptor Proteins, Signal Transducing , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Chromosome Aberrations , Chromosomes, Human, Pair 15/genetics , Dendritic Spines/metabolism , Disease Models, Animal , Female , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Phenotype , Random Allocation
8.
Neuroscience ; 394: 23-29, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30342199

ABSTRACT

The perirhinal cortex (PRH) is considered a crucial cortical area for familiarity memory and electrophysiological studies have reported the presence of visual familiarity encoding neurons in PRH. However, recent evidence has questioned the existence of these neurons. Here, we used a visual task in which head-restrained mice were passively exposed to oriented gratings or natural images. Evoked potentials and single-unit recordings showed evoked responses to novelty in V1 under some conditions. However, the PRH showed no response modulation with respect to familiarity under a variety of different conditions or retention delays. These results indicate that the PRH does not contribute to familiarity/novelty encoding using passively exposed visual stimuli.


Subject(s)
Neurons/physiology , Pattern Recognition, Visual/physiology , Perirhinal Cortex/physiology , Recognition, Psychology/physiology , Animals , Discrimination, Psychological/physiology , Evoked Potentials, Visual , Female , Male , Mice, Inbred C57BL , Photic Stimulation , Visual Cortex/physiology
9.
Neuron ; 98(3): 602-615.e8, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29656873

ABSTRACT

Cortical computation arises from the interaction of multiple neuronal types, including pyramidal (Pyr) cells and interneurons expressing Sst, Vip, or Pvalb. To study the circuit underlying such interactions, we imaged these four types of cells in mouse primary visual cortex (V1). Our recordings in darkness were consistent with a "disinhibitory" model in which locomotion activates Vip cells, thus inhibiting Sst cells and disinhibiting Pyr cells. However, the disinhibitory model failed when visual stimuli were present: locomotion increased Sst cell responses to large stimuli and Vip cell responses to small stimuli. A recurrent network model successfully predicted each cell type's activity from the measured activity of other types. Capturing the effects of locomotion, however, required allowing it to increase feedforward synaptic weights and modulate recurrent weights. This network model summarizes interneuron interactions and suggests that locomotion may alter cortical computation by changing effective synaptic connectivity.


Subject(s)
Locomotion/physiology , Nerve Net/physiology , Neurons/physiology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Mice , Mice, Transgenic , Nerve Net/cytology , Photic Stimulation/methods , Visual Cortex/cytology
10.
J Immunol ; 200(1): 196-208, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29158417

ABSTRACT

Reactive oxygen species (ROS) produced by NADPH phagocyte oxidase isoform (NOX2) are critical for the elimination of intracellular pathogens in many infections. Despite their importance, the role of ROS following infection with the eukaryotic pathogen Leishmania has not been fully elucidated. We addressed the role of ROS in C57BL/6 mice following intradermal infection with Leishmania amazonensis. Despite equivalent parasite loads compared with wild-type (WT) mice, mice deficient in ROS production by NOX2 due to the absence of the gp91 subunit (gp91phox-/-) had significantly more severe pathology in the later stages of infection. Pathology in gp91phox-/- mice was not associated with alterations in CD4+ T cell-mediated immunity but was preceded by enhanced neutrophil accumulation at the dermal infection site. Ex vivo analysis of infected versus uninfected neutrophils revealed a deficiency in infection-driven apoptosis in gp91phox-/- mice versus WT mice. gp91phox-/- mice presented with higher percentages of healthy or necrotic neutrophils but lower percentages of apoptotic neutrophils at early and chronic time points. In vitro infection of gp91phox-/- versus WT neutrophils also revealed reduced apoptosis and CD95 expression but increased necrosis in infected cells at 10 h postinfection. Provision of exogenous ROS in the form of H2O2 reversed the necrotic phenotype and restored CD95 expression on infected gp91phox-/- neutrophils. Although ROS production is typically viewed as a proinflammatory event, our observations identify the importance of ROS in mediating appropriate neutrophil apoptosis and the importance of apoptosis in inflammation and pathology during chronic infection.


Subject(s)
Inflammation/immunology , Leishmania/immunology , Leishmaniasis/immunology , NADPH Oxidase 2/metabolism , Neutrophils/immunology , Animals , Apoptosis , Cell Movement , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2/genetics , Parasite Load , Reactive Oxygen Species/metabolism , fas Receptor/metabolism
11.
Cell Rep ; 20(10): 2513-2524, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28877482

ABSTRACT

Research in neuroscience increasingly relies on the mouse, a mammalian species that affords unparalleled genetic tractability and brain atlases. Here, we introduce high-yield methods for probing mouse visual decisions. Mice are head-fixed, facilitating repeatable visual stimulation, eye tracking, and brain access. They turn a steering wheel to make two alternative choices, forced or unforced. Learning is rapid thanks to intuitive coupling of stimuli to wheel position. The mouse decisions deliver high-quality psychometric curves for detection and discrimination and conform to the predictions of a simple probabilistic observer model. The task is readily paired with two-photon imaging of cortical activity. Optogenetic inactivation reveals that the task requires mice to use their visual cortex. Mice are motivated to perform the task by fluid reward or optogenetic stimulation of dopamine neurons. This stimulation elicits a larger number of trials and faster learning. These methods provide a platform to accurately probe mouse vision and its neural basis.


Subject(s)
Choice Behavior/physiology , Dopaminergic Neurons/metabolism , Psychophysics/methods , Visual Cortex/metabolism , Visual Cortex/physiology , Animals , Female , Male , Mice , Photic Stimulation
12.
Cell Rep ; 18(4): 840-848, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28122235

ABSTRACT

Activity of neurons in primary visual cortex is shaped by sensory and behavioral context. However, the long-term stability of the influence of contextual factors in the mature cortex remains poorly understood. To investigate this, we used two-photon calcium imaging to track the influence of surround suppression and locomotion on individual neurons over 14 days. We found that highly active excitatory neurons and parvalbumin-positive (PV+) interneurons exhibited relatively stable modulation by visual context. Similarly, most neurons exhibited a stable yet distinct degree of modulation by locomotion. In contrast, less active excitatory neurons exhibited plasticity in visual context influence, resulting in increased suppression. These findings suggest that the mature visual cortex possesses stable subnetworks of neurons, differentiated by cell type and activity level, which have distinctive and stable interactions with sensory and behavioral contexts, as well as other less active and more labile neurons, which are sensitive to visual experience.


Subject(s)
Neuronal Plasticity/physiology , Visual Cortex/physiology , Algorithms , Animals , Calcium/metabolism , Interneurons/metabolism , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Parvalbumins/metabolism , Photic Stimulation
13.
Neuron ; 88(3): 539-52, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26481037

ABSTRACT

Layer 5 contains the major projection neurons of the neocortex and is composed of two major cell types: regular spiking (RS) cells, which have cortico-cortical projections, and intrinsic bursting cells (IB), which have subcortical projections. Little is known about the plasticity processes and specifically the molecular mechanisms by which these two cell classes develop and maintain their unique integrative properties. In this study, we find that RS and IB cells show fundementally different experience-dependent plasticity processes and integrate Hebbian and homeostatic components of plasticity differently. Both RS and IB cells showed TNFα-dependent homeostatic plasticity in response to sensory deprivation, but IB cells were capable of a much faster synaptic depression and homeostatic rebound than RS cells. Only IB cells showed input-specific potentiation that depended on CaMKII autophosphorylation. Our findings demonstrate that plasticity mechanisms are not uniform within the neocortex, even within a cortical layer, but are specialized within subcircuits.


Subject(s)
Action Potentials/physiology , Homeostasis/physiology , Neocortex/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Vibrissae/physiology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Somatosensory Cortex/physiology , Synapses/physiology , Vibrissae/innervation
14.
J Neurosci ; 33(38): 15220-5, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-24048851

ABSTRACT

Ocular dominance plasticity is a widely studied model of experience-dependent cortical plasticity. It has been shown that potentiation of open eye responses resulting from monocular deprivation relies on a homeostatic response to loss of input from the closed eye, but the mechanisms by which this occurs are not fully understood. The role of GluA1 in the homeostatic component of ocular dominance (OD) plasticity has not so far been tested. In this study, we tested the idea that the GluA1 subunit of the AMPA receptor is necessary for open eye potentiation. We found that open eye potentiation did not occur in GluA1 knock-out (GluA1(-/-)) mice but did occur in wild-type littermates when monocular deprivation was imposed during the critical period. We also found that depression of the closed eye response that normally occurs in the monocular as well as binocular zone is delayed, but only in the monocular zone in GluA1(-/-) mice and only in a background strain we have previously shown lacks synaptic scaling (C57BL/6OlaHsd). In adult mice, we found that OD plasticity and facilitation of OD plasticity by prior monocular experience were both present in GluA1(-/-) mice, suggesting that the GluA1-dependent mechanisms only operate during the critical period.


Subject(s)
Dominance, Ocular/physiology , Neuronal Plasticity/physiology , Receptors, AMPA/metabolism , Visual Cortex/physiology , Age Factors , Analysis of Variance , Animals , Electroencephalography , Electroretinography , Evoked Potentials, Visual/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/genetics , Photic Stimulation , Receptors, AMPA/genetics , Sensory Deprivation , Visual Pathways/physiology
15.
Proc Natl Acad Sci U S A ; 109(4): 1311-6, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22232689

ABSTRACT

Ocular dominance (OD) plasticity in the visual cortex is a classic model system for understanding developmental plasticity, but the visual cortex also shows plasticity in adulthood. Whether the plasticity mechanisms are similar or different at the two ages is not clear. Several plasticity mechanisms operate during development, including homeostatic plasticity, which acts to maintain the total excitatory drive to a neuron. In agreement with this idea, we found that an often-studied substrain of C57BL/6 mice, C57BL/6JOlaHsd (6JOla), lacks both the homeostatic component of OD plasticity as assessed by intrinsic signal imaging and synaptic scaling of mEPSC amplitudes after a short period of dark exposure during the critical period, whereas another substrain, C57BL/6J (6J), exhibits both plasticity processes. However, in adult mice, OD plasticity was identical in the 6JOla and 6J substrains, suggesting that adult plasticity occurs by a different mechanism. Consistent with this interpretation, adult OD plasticity was normal in TNFα knockout mice, which are known to lack juvenile synaptic scaling and the homeostatic component of OD plasticity, but was absent in adult α-calcium/calmodulin-dependent protein kinase II;T286A (αCaMKII(T286A)) mice, which have a point mutation that prevents autophosphorylation of αCaMKII. We conclude that increased responsiveness to open-eye stimulation after monocular deprivation during the critical period is a homeostatic process that depends mechanistically on synaptic scaling during the critical period, whereas in adult mice it is mediated by a different mechanism that requires αCaMKII autophosphorylation. Thus, our study reveals a transition between homeostatic and long-term potentiation-like plasticity mechanisms with increasing age.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dominance, Ocular/physiology , Homeostasis/physiology , Neuronal Plasticity/physiology , Visual Cortex/physiology , Age Factors , Analysis of Variance , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Electrophysiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Tumor Necrosis Factor-alpha/genetics
16.
J Vis ; 8(14): 11.1-16, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-19146312

ABSTRACT

Attentional and oculomotor capture by some salient visual event gives insight into what types of dynamic signals the human orienting system is sensitive to. We examined the sensitivity of the saccadic eye movement system to 4 types of dynamic, but task-irrelevant, visual events: abrupt onset, abrupt offset, motion onset and flicker onset. We varied (1) the primary task (contrast vs. motion discrimination) and (2) the amount of prior knowledge of the location of the dynamic event. Interference from the irrelevant events was quantified using a discrimination threshold metric. When the primary task involved contrast discrimination, all four events disrupted performance approximately equally, including the sudden disappearance of an old object. However, when motion was the task-relevant dimension, abrupt onsets and offsets did not disrupt performance at all, but motion onset had a strong effect. Providing more spatial certainty to observers decreased the amount of direct oculomotor capture but nevertheless impaired performance. We conclude that oculomotor capture is predominantly contingent upon the channel the observer monitors in order to perform the primary visual task.


Subject(s)
Motion Perception/physiology , Oculomotor Muscles/physiology , Saccades/physiology , Visual Perception/physiology , Adult , Differential Threshold , Discrimination, Psychological , Humans , Male , Reaction Time , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...