Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 22(19): 3043-52, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18763276

ABSTRACT

We present FiD (Fragment iDentificator), a software tool for the structural identification of product ions produced with tandem mass spectrometric measurement of low molecular weight organic compounds. Tandem mass spectrometry (MS/MS) has proven to be an indispensable tool in modern, cell-wide metabolomics and fluxomics studies. In such studies, the structural information of the MS(n) product ions is usually needed in the downstream analysis of the measurement data. The manual identification of the structures of MS(n) product ions is, however, a nontrivial task requiring expertise, and calls for computer assistance. Commercial software tools, such as Mass Frontier and ACD/MS Fragmenter, rely on fragmentation rule databases for the identification of MS(n) product ions. FiD, on the other hand, conducts a combinatorial search over all possible fragmentation paths and outputs a ranked list of alternative structures. This gives the user an advantage in situations where the MS/MS data of compounds with less well-known fragmentation mechanisms are processed. FiD software implements two fragmentation models, the single-step model that ignores intermediate fragmentation states and the multi-step model, which allows for complex fragmentation pathways. The software works for MS/MS data produced both in positive- and negative-ion modes. The software has an easy-to-use graphical interface with built-in visualization capabilities for structures of product ions and fragmentation pathways. In our experiments involving amino acids and sugar-phosphates, often found, e.g., in the central carbon metabolism of yeasts, FiD software correctly predicted the structures of product ions on average in 85% of the cases. The FiD software is free for academic use and is available for download from www.cs.helsinki.fi/group/sysfys/software/fragid.


Subject(s)
Algorithms , Ions/chemistry , Models, Chemical , Software , Spectrometry, Mass, Electrospray Ionization/methods , Computer Simulation , Reproducibility of Results , Sensitivity and Specificity
2.
BMC Bioinformatics ; 9: 266, 2008 Jun 06.
Article in English | MEDLINE | ID: mdl-18534038

ABSTRACT

BACKGROUND: Metabolic fluxes provide invaluable insight on the integrated response of a cell to environmental stimuli or genetic modifications. Current computational methods for estimating the metabolic fluxes from 13C isotopomer measurement data rely either on manual derivation of analytic equations constraining the fluxes or on the numerical solution of a highly nonlinear system of isotopomer balance equations. In the first approach, analytic equations have to be tediously derived for each organism, substrate or labelling pattern, while in the second approach, the global nature of an optimum solution is difficult to prove and comprehensive measurements of external fluxes to augment the 13C isotopomer data are typically needed. RESULTS: We present a novel analytic framework for estimating metabolic flux ratios in the cell from 13C isotopomer measurement data. In the presented framework, equation systems constraining the fluxes are derived automatically from the model of the metabolism of an organism. The framework is designed to be applicable with all metabolic network topologies, 13C isotopomer measurement techniques, substrates and substrate labelling patterns. By analyzing nuclear magnetic resonance (NMR) and mass spectrometry (MS) measurement data obtained from the experiments on glucose with the model micro-organisms Bacillus subtilis and Saccharomyces cerevisiae we show that our framework is able to automatically produce the flux ratios discovered so far by the domain experts with tedious manual analysis. Furthermore, we show by in silico calculability analysis that our framework can rapidly produce flux ratio equations--as well as predict when the flux ratios are unobtainable by linear means--also for substrates not related to glucose. CONCLUSION: The core of 13C metabolic flux analysis framework introduced in this article constitutes of flow and independence analysis of metabolic fragments and techniques for manipulating isotopomer measurements with vector space techniques. These methods facilitate efficient, analytic computation of the ratios between the fluxes of pathways that converge to a common junction metabolite. The framework can been seen as a generalization and formalization of existing tradition for computing metabolic flux ratios where equations constraining flux ratios are manually derived, usually without explicitly showing the formal proofs of the validity of the equations.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/analysis , Carbon Isotopes/pharmacokinetics , Fungal Proteins/analysis , Glucose/metabolism , Saccharomyces cerevisiae/metabolism , Artificial Intelligence , Bacterial Proteins/metabolism , Citric Acid Cycle/physiology , Computer Simulation , Databases, Factual , Fungal Proteins/metabolism , Glycolysis/physiology , Isomerism , Isotope Labeling , Magnetic Resonance Spectroscopy , Mass Spectrometry , Neural Networks, Computer , Pentose Phosphate Pathway/physiology , Research Design , Statistics as Topic/methods
3.
J Integr Bioinform ; 5(2)2008 Aug 25.
Article in English | MEDLINE | ID: mdl-20134058

ABSTRACT

ReMatch is a web-based, user-friendly tool that constructs stoichiometric network models for metabolic flux analysis, integrating user-developed models into a database collected from several comprehensive metabolic data resources, including KEGG, MetaCyc and CheBI. Particularly, ReMatch augments the metabolic reactions of the model with carbon mappings to facilitate (13)C metabolic flux analysis. The construction of a network model consisting of biochemical reactions is the first step in most metabolic modelling tasks. This model construction can be a tedious task as the required information is usually scattered to many separate databases whose interoperability is suboptimal, due to the heterogeneous naming conventions of metabolites in different databases. Another, particularly severe data integration problem is faced in (13)C metabolic flux analysis, where the mappings of carbon atoms from substrates into products in the model are required. ReMatch has been developed to solve the above data integration problems. First, ReMatch matches the imported user-developed model against the internal ReMatch database while considering a comprehensive metabolite name thesaurus. This, together with wild card support, allows the user to specify the model quickly without having to look the names up manually. Second, ReMatch is able to augment reactions of the model with carbon mappings, obtained either from the internal database or given by the user with an easy-touse tool. The constructed models can be exported into 13C-FLUX and SBML file formats. Further, a stoichiometric matrix and visualizations of the network model can be generated. The constructed models of metabolic networks can be optionally made available to the other users of ReMatch. Thus, ReMatch provides a common repository for metabolic network models with carbon mappings for the needs of metabolic flux analysis community. ReMatch is freely available for academic use at http://www.cs.helsinki.fi/group/sysfys/software/rematch/.


Subject(s)
Carbon/metabolism , Computational Biology/methods , Metabolic Networks and Pathways , Software , Databases, Factual , Internet , User-Computer Interface
4.
Bioinformatics ; 22(10): 1198-206, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16504982

ABSTRACT

MOTIVATION: Flux estimation using isotopomer information of metabolites is currently the most reliable method to obtain quantitative estimates of the activity of metabolic pathways. However, the development of isotopomer measurement techniques for intermediate metabolites is a demanding task. Careful planning of isotopomer measurements is thus needed to maximize the available flux information while minimizing the experimental effort. RESULTS: In this paper we study the question of finding the smallest subset of metabolites to measure that ensure the same level of isotopomer information as the measurement of every metabolite in the metabolic network. We study the computational complexity of this optimization problem in the case of the so-called positional enrichment data, give methods for obtaining exact and fast approximate solutions, and evaluate empirically the efficacy of the proposed methods by analyzing a metabolic network that models the central carbon metabolism of Saccharomyces cerevisiae.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Models, Biological , Protein Interaction Mapping/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction/physiology , Algorithms , Carbon/metabolism , Computer Simulation , Diagnostic Techniques, Radioisotope , Saccharomyces cerevisiae Proteins/analysis
5.
Metab Eng ; 4(4): 285-94, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12646323

ABSTRACT

The isotopomer distributions of metabolites are invaluable pieces of information in the computation of the flux distribution in a metabolic network. We describe the use of tandem mass spectrometry with the daughter ion scanning technique in the discovery of positional isotopomer distributions (PID). This technique increases the possibilities of mass spectrometry since given the same fragment ions, it uncovers more information than the full scanning mode. The mathematics of the new technique is slightly more complicated than the techniques needed by full scanning mode methods. Our experiments, however, show that in practice the inadequacy of the fragmentation of amino acids in the tandem mass spectrometer does not allow uncovering the PID exactly even if the daughter ion scanning is used. The computational techniques have been implemented in a MATLAB application called PIDC (Positional Isotopomer Distribution Calculator).


Subject(s)
Algorithms , Carbon Isotopes/analysis , Carbon Isotopes/chemistry , Isotope Labeling/methods , Mass Spectrometry/methods , Alanine/analysis , Alanine/chemistry , Amino Acids/analysis , Amino Acids/chemistry , Chromatography, Liquid/methods , Isomerism , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL